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Linear Regression: old and new

Typical problem: we are given n observations of variables
X1, . . . , Xp and Y .

Goal: Use X1, . . . , Xp to try to predict Y .
Example: Cars data compiled using Kelley Blue Book
(n = 805, p = 11).

Find a linear model Y = β1X1 + · · ·+ βpXp.
In the example, we want:
price = β1 ·mileage + β2 · cylinder + . . .
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Linear regression: classical setting

p = nb. of variables, n = nb. of observations.

Classical setting:
n� p (n much larger than p). With enough observations, we
hope to be able to build a good model.
Note: even if the “true” relationship between the variables is
not linear, we can include transformations of variables.
E.g.

Xp+1 = X2
1 , Xp+2 = X2

2 , . . .

Note: adding transformed variables can increase p significantly.
A complex model requires a lot of observations to estimate its
parameters.
A complex model may “overfit” the data (discussed later).

Modern setting:
In modern problems, it is often the case that n� p.
Requires supplementary assumptions (e.g. sparsity).
Can still build good models with very few observations.
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Classical setting

Idea:
Y ∈ Rn×1 X ∈ Rn×p

Y =


y1
y2
. . .
yn

 X =

 . . .

x1 x2 . . . xp

. . .

 ,

where x1, . . . ,xp ∈ Rn×1 are the observations of X1, . . . Xp.
We want Y = β1X1 + · · ·+ βpXp.
Equivalent to solving

Y = Xβ β =


β1
β2
...
βp

 .
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Classical setting (cont.)

We need to solve Y = Xβ.
Obviously, in general, the system has no solution.

A popular approach is to solve the system in the least squares
sense:

β̂ = argmin
β∈Rp

‖Y −Xβ‖2.

How do we compute the solution?
Calculus approach:

∂

∂βi
‖Y −Xβ‖2 = ∂

∂βi

n∑
k=1

(yk −Xk1β1 −Xk2β2 − · · · −Xkpβp)
2

= 2

n∑
k=1

(yk −Xk1β1 −Xk2β2 − · · · −Xkpβp)× (−Xki)

= 0.Therefore,
n∑
k=1

Xki(Xk1β1 +Xk2β2 + · · ·+Xkpβp) =

n∑
k=1

Xkiyk
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Calculus approach (cont.)

Now
n∑
k=1

Xki(Xk1β1+Xk2β2+· · ·+Xkpβp) =

n∑
k=1

Xkiyk i = 1, . . . , p,

is equivalent to:

XTXβ = XT y (Normal equations).

We compute the Hessian:

∂2

∂βiβj
‖Y −Xβ‖2 = 2XTX.

If XTX is invertible, then XTX is positive definite and

β̂ = (XTX)−1XTY

is the unique minimum of ‖Y −Xβ‖2.
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Linear algebra approach

Want to solve Y = Xβ.
Linear algebra approach: Recall: If V ⊂ Rn is a subspace and
w 6∈ V , then the best approximation of w by a vector in V is

projV (w).

“Best” in the sense that:

‖w − projV (w)‖ ≤ ‖w − v‖ ∀v ∈ V.

Here:
Xβ ∈ col(X) = span(x1, . . . ,xp).

If Y 6∈ col(X), then the best approximation of Y by a vector in
col(X) is

projcol(X)(Y ).
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Linear algebra approach (cont.)

So ‖Y − projcol(X)(Y )‖ ≤ ‖Y −Xβ‖ ∀β ∈ Rp.

Therefore, to find β̂, we solve

Xβ̂ = projcol(X)(Y )

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

Y −Xβ̂ = Y − projcol(X)(Y ) = projcol(X)⊥(Y ).

Recall
col(X)⊥ = null(XT ).

Thus,
Y −Xβ̂ = projnull(XT )(Y ) ∈ null(XT ).

That implies:
XT (Y −Xβ̂) = 0.

Equivalently,

XTXβ̂ = XTY (Normal equations).
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The least squares theorem

Theorem (Least squares theorem)

Let A ∈ Rn×m and b ∈ Rn. Then
1 Ax = b always has a least squares solution x̂.
2 A vector x̂ is a least squares solution iff it satisfies the normal

equations
ATAx̂ = AT b.

3 x̂ is unique ⇔ the columns of A are linearly independent ⇔
ATA is invertible. In that case, the unique least squares
solution is given by

x̂ = (ATA)−1AT b.
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Building a simple linear model with Python

The file JSE_Car_Lab.csv:

Loading the data with the headers using Pandas:

import pandas as pd
data = pd.read_csv(’./data/JSE_Car_Lab.csv’,delimiter=’,’)

We extract the numerical columns:

y = np.array(data[’Price’])
x = np.array(data[’Mileage’])
x = x.reshape(len(x),1)
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Building a simple linear model with Python (cont.)

The scikit-learn package provides a lot of very powerful
functions/objects to analyse datasets.

Typical syntax:
1 Create object representing the model.
2 Call the fit method of the model with the data as arguments.
3 Use the predict method to make predictions.

from sklearn.linear_model import LinearRegression
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(x,y)

print(lin_model.coef_)
print(lin_model.intercept_)

We obtain price ≈ −0.17 ·mileage + 24764.5.
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Measuring the fit of a linear model

How good is our linear model?

We examine the residual sum of squares:

RSS(β̂) = ‖y −Xβ̂‖2 =
n∑
k=1

(yi − ŷi)2.

((y-lin_model.predict(x))**2).sum()

We find: 76855792485.91. Quite a large error. . . The average
absolute error:
(abs(y-lin_model.predict(x))).mean()

is 7596.28. Not so good. . .
We examine the distribution of the residuals:
import matplotlib.pyplot as plt
plt.hist(y-lin_model.predict(x))
plt.show()
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Measuring the fit of a linear model (cont.)

Histogram of the residuals:

Non-symmetric.
Heavy tail.

The heavy tail suggests there may be outliers.
It also suggests transforming the response variable using a
transformation such as log,

√
·, or 1/x.
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Measuring the fit of a linear model (cont.)

Plotting the residuals as a function of the fitted values, we
immediately observe some patterns.

Outliers? Separate categories of cars?
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Improving the model

Add more variables to the model.
Select the best variables to include.
Use transformations.
Separate cars into categories (e.g. exclude expansive cars).
etc.

For example, let us use all the variables, and exclude Cadillacs from
the dataset.

Much more symmetric.
Closer to a Gaussian
distribution.

Average absolute error drops to 4241.21.
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