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Linear Regression: old and new

@ Typical problem: we are given n observations of variables
Xi,...,Xpand Y.
e Goal: Use Xi,..., X, to try to predict Y.

@ Example: Cars data compiled using Kelley Blue Book
(n =805,p=11).

Price Mileage Make  [Model ITHm Type Cylinder | Liter Doors Cruse  Sound  Leather
17314.103 8221 Buick Century edan 4D Sedan 6 4 1 4 1
17542.036 9135 Buick Century  Sedan 4D Sedan 6 3.1 4 1 1 0
16218.848 13196 Buick Century  Sedan 4D Sedan 6 31 4 b 1 0
16336.913 16342 Buick Century  Sedan 4D Sedan 6 3.1 4 1 0 0
16339.17 19832 Buick Century  Sedan 4D Sedan 6 3.1 4 1 0 1
15709.053 22236 Buick Century  Sedan 4D Sedan 6 31 4 4 il 0
15230 22576 Buick Century  Sedan 4D Sedan 6 3.1 4 a1l il o
15048.042 22964 Buick Century  Sedan 4D Sedan 6 31 4 3 & 0
14862.094 24021 Buick Century  Sedan 4D Sedan 6 3.1 4 3 0 1
15295.018 27325 Buick Century  Sedan 4D Sedan 6 3.1 4 1 1 1
21335.852 10237 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 0 o
20538.088 15066 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1) 0
20512.094 16633 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1 o
19924.159 19800 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1 1
19774.249 23359 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1 1
19344.166 23765 Buick Lacrosse CX Sedar» Sedan 6 3.6 4 1 il 0
10inE 19 2anno B inl Vnmenecn |V Cncdors Crrdan, B aa 2 T n n

e Find a linear model Y = 51X +--- + 3,X,.
@ In the example, we want:
price = ;1 - mileage + Bs - cylinder + . ..
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Linear regression: classical setting

p = nb. of variables,n = nb. of observations.
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Linear regression: classical setting

p = nb. of variables,n = nb. of observations.
Classical setting:
@ n > p (n much larger than p). With enough observations, we
hope to be able to build a good model.
@ Note: even if the “true” relationship between the variables is
not linear, we can include transformations of variables.
E.g.

2 2
Xp+1 :Xl,Xp_l,_Q :XQ,

Note: adding transformed variables can increase p significantly.

A complex model requires a lot of observations to estimate its
parameters.

A complex model may “overfit” the data (discussed later).
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Linear regression: classical setting

p = nb. of variables,n = nb. of observations.
Classical setting:

@ n > p (n much larger than p). With enough observations, we
hope to be able to build a good model.
@ Note: even if the “true” relationship between the variables is
not linear, we can include transformations of variables.
o Eg.
Xpr1 = X3, Xpyo = X3,
@ Note: adding transformed variables can increase p significantly.

@ A complex model requires a lot of observations to estimate its
parameters.

@ A complex model may “overfit” the data (discussed later).
Modern setting:

@ In modern problems, it is often the case that n < p.

@ Requires supplementary assumptions (e.g. sparsity).

@ Can still build good models with very few observations.
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Classical setting

Idea:
Y e R X € R™*P
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Classical setting

Idea:
Y e R X e R™*P
U1
" o
Y = X=1|x1 X2 ... Xp|,
. o
where x1,...,xp € R™*! are the observations of X7,...X),.

e WewantY = 1.Xq +--- + 3,X,.

e Equivalent to solving

A
Ba

5,

4/15



Classical setting (cont.)

We need to solve Y = X 5.
@ Obviously, in general, the system has no solution.
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Classical setting (cont.)

We need to solve Y = X 5.
@ Obviously, in general, the system has no solution.
@ A popular approach is to solve the system in the least squares

sense:
f = argmin ||Y — X%
BERP

@ How do we compute the solution?
Calculus approach:

n

aaﬁiHY — XpB|? = Baﬁi kzl (yr — Xp1B1 — XpaBo — -+ — XipBp)®
=2 Z (Y — X1 f1 — Xiafo — -+ — Xppfp) X (—Xki)
k=1
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Classical setting (cont.)

We need to solve Y = X 5.
@ Obviously, in general, the system has no solution.
@ A popular approach is to solve the system in the least squares

sense:
f = argmin ||Y — X3|°.
BERP

@ How do we compute the solution?
Calculus approach:

n

0 0
(‘T@QHY — XpB|? = 95, kzl (yr — Xp1B1 — XpaBo — -+ — XipBp)®
=2 (yp — Xp1B1 — Xp2B2 — -+ — XppBp) X (—Xpi)
k=1
Therefore, =0.

n n
D Xii(XiaBr + XuoBo + -+ XipBp) = D Xtk
—1

k=1 5/15



Calculus approach (cont.)

Now

n n
> Xni(XeBr+-XnoBat -+ XipBp) = Xpge  i=1,...,p,
k=1 k=1

is equivalent to:

XTxp=x"Ty (Normal equations).
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Now
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Calculus approach (cont.)

Now
n n
> Xni(XeBr+-XnoBat -+ XipBp) = Xpge  i=1,...,p,
k=1 k=1
is equivalent to:
XTxp=x"Ty (Normal equations).
We compute the Hessian:

692
0B Bj

If XX is invertible, then X7 X is positive definite and

Iy - X8|* = 2X" X.

f=xXTX)"'xTy

is the unique minimum of |Y — X 3||%.
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Linear algebra approach

Want to solve Y = X 3.
Linear algebra approach: Recall: If V' C R" is a subspace and
w & V', then the best approximation of w by a vector in V' is

projy (w).
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Linear algebra approach

Want to solve Y = X 3.
Linear algebra approach: Recall: If V' C R" is a subspace and
w & V', then the best approximation of w by a vector in V' is

projy (w).
“Best” in the sense that:

[w —projy(w)|| < flw—wvf|  YveV.

Here:

X € col(X) = span(xq,...,Xp).
If Y & col(X), then the best approximation of Y by a vector in
col(X) is
pro.jcol(X) (Y) .
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Linear algebra approach (cont.)

Y = projegn (V) < IV - X8| VB R
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Linear algebra approach (cont.)
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Therefore, to find B we solve

XpB= Projeol(x)(Y)

(Note: this system always has a solution.)

8/15



Linear algebra approach (cont.)

Y = projegn (V) < IV - X8| VB R

Therefore, to find B we solve

XpB= Projeol(x)(Y)

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

Y — XB=Y — projex)(Y) = projeex: (Y).

8/15



Linear algebra approach (cont.)

Y = projegn (V) < IV - X8| VB R

Therefore, to find B we solve
XpB= Projeol(x)(Y)

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

Y — XB=Y — projex)(Y) = projeex: (Y).

Recall
col(X)* = null(x7).

8/15



Linear algebra approach (cont.)

SO Y~ projen (V) < Y — XBI| V8 € R,
Therefore, to find B we solve
XpB= Projeol(x)(Y)

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

Y — XB=Y — projex)(Y) = projeex: (Y).

Recall
col(X)t = null(X 7).
Thus, ) 0 )
Y — XB = projuxry(Y) € null(X7T).
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Linear algebra approach (cont.)

SO Y~ projen (V) < Y — XBI| V8 € R,
Therefore, to find B we solve
XpB= Projeol(x)(Y)

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

Y — XB=Y — projex)(Y) = projeex: (Y).

Recall
col(X)*+ = null(xT).
Thus, ) <0 5
Y — XB = projuxry(Y) € null(X7T).
That implies: R
XT(y — Xp)=0.
Equivalently,

XTxp=xTy (Normal equations).
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The least squares theorem

Theorem (Least squares theorem)
Let A € R™™ and b € R™. Then

© Az = b always has a least squares solution % .

@ A vector & is a least squares solution iff it satisfies the normal

equations
AT Az = ATb.

© 1 is unique < the columns of A are linearly independent <
AT A is invertible. In that case, the unique least squares
solution is given by

&= (ATA)~1ATh.
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Building a simple linear model with Python

The file JSE_Car_Lab.csv:

Price,Mileage,Make,Model, Trim, Type, Cylinder, Liter,Doors,Cruise, Sound, Leather
17314. 10312896016,8221,Buick, Century, Sedan 4D,Sedan,6,3.1,4,1,1,1

17542.0360832793, 9135, Buick, Century,Sedan 4D, Sedan,ﬁ,}.l,A,l,l,G

16218.8478619377,13196,Buick, Century, Sedan 4D,Sedan,6,
16336.9131400486, 16342, Buick, Century,Sedan 4D,Sedan, 6,
16339.1703239255, 19832, Buick, Century, Sedan 4D,Sedan,6,
15769.0528210833, 22236, Buick, Century,Sedan 4D,Sedan,6
15230.0033898479, 22576, Buick, Century, Sedan 4D,Sedan,6
15048.042184116,22964,Buick, Century, Sedan 4D,Sedan,6,3.1,4,1,1,0
14862 .0938695978, 24021, Buick, Century,Sedan 4D,Sedan,6,
15295.0182668788,27325,Buick, Century,Sedan 4D,Sedan,6,

Foom—wowmswne
ww

Loading the data with the headers using Pandas:

import pandas as pd
data = pd.read_csv(’./data/JSE_Car_Lab.csv’,delimiter=’,")

We extract the numerical columns:

y = np.array(data[’Price’])
np.array(datal[’Mileage’])
x.reshape(len(x),1)

®o
o
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Building a simple linear model with Python (cont.)

The scikit-learn package provides a lot of very powerful
functions/objects to analyse datasets.
Typical syntax:
© Create object representing the model.
@ Call the fit method of the model with the data as arguments.
© Use the predict method to make predictions.

from sklearn.linear_model import LinearRegression
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(x,y)

print (lin_model.coef_)
print(lin_model.intercept_)

We obtain price ~ —0.17 - mileage + 24764.5.
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Measuring the fit of a linear model

How good is our linear model?
@ We examine the residual sum of squares:

RSS(B) = lly — XBI* =D (vi — i)
k=1
((y-lin_model.predict (x))**2) .sum()
We find: 76855792485.91. Quite a large error. .. The average
absolute error:
(abs(y-lin_model.predict(x))) .mean()
is 7596.28. Not so good. ..
@ We examine the distribution of the residuals:

import matplotlib.pyplot as plt
plt.hist(y-lin_model.predict(x))
plt.show()
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Measuring the fit of a linear model (cont.)

Histogram of the residuals:

300

@ Non-symmetric.

@ Heavy tail.
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Measuring the fit of a linear model (cont.)

Histogram of the residuals:

300

@ Non-symmetric.

@ Heavy tail.

0
~20000  -10000 0 10000 20000 30000 40000 50000

@ The heavy tail suggests there may be outliers.

@ It also suggests transforming the response variable using a
transformation such as log, /-, or 1/x.
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Measuring the fit of a linear model (cont.)

Plotting the residuals as a function of the fitted values, we
immediately observe some patterns.

50000 Residuals plot

40000 .

30000

20000

Residual

10000

0

-10000

~20000
14000 16000 18000 20000 22000 24000 26000
Fitted value

Outliers? Separate categories of cars?
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Improving the model

Add more variables to the model.

Select the best variables to include.

Use transformations.

Separate cars into categories (e.g. exclude expansive cars).
etc.

e 6 6 6 o

For example, let us use all the variables, and exclude Cadillacs from
the dataset.

@ Much more symmetric.

o Closer to a Gaussian
distribution.

0
-10000  —5000 0 5000 10000 15000 20000

Average absolute error drops to 4241.21.
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