MATH 637: Mathematical Techniques in Data Science Support vector machines

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

April 6, 2020

Hyperplanes

Recall:

- A hyperplane H in $V = \mathbb{R}^n$ is a subspace of V of dimension n-1 (i.e., a subspace of codimension 1).
- \bullet Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via

$$H = \{x \in \mathbb{R}^n : \beta^T x = 0\} = \operatorname{span}(\beta)^{\perp}.$$

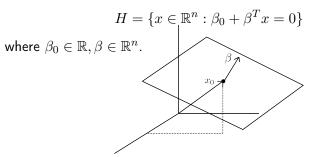
Hyperplanes

Recall:

- A hyperplane H in $V = \mathbb{R}^n$ is a subspace of V of dimension n-1 (i.e., a subspace of codimension 1).
- \bullet Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via

$$H = \{x \in \mathbb{R}^n : \beta^T x = 0\} = \operatorname{span}(\beta)^{\perp}.$$

ullet An affine hyperplane H in \mathbb{R}^n is a subset of the form



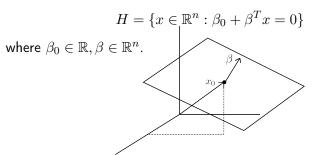
Hyperplanes

Recall:

- A hyperplane H in $V = \mathbb{R}^n$ is a subspace of V of dimension n-1 (i.e., a subspace of codimension 1).
- \bullet Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via

$$H = \{ x \in \mathbb{R}^n : \beta^T x = 0 \} = \operatorname{span}(\beta)^{\perp}.$$

ullet An affine hyperplane H in \mathbb{R}^n is a subset of the form

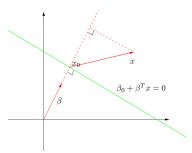


We often use the term "hyperplane" for "affine hyperplane".

Hyperplanes (cont.)

Let

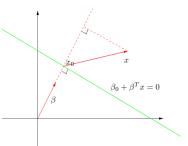
$$H = \{x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0\}.$$



Hyperplanes (cont.)

Let

$$H = \{ x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0 \}.$$



Note that for $x_0, x_1 \in H$,

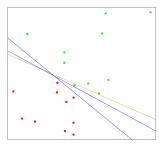
$$\beta^T(x_0 - x_1) = 0.$$

Thus β is perpendicular to H. It follows that for $x \in \mathbb{R}^n$,

$$d(x, H) = \frac{\beta^T}{\|\beta\|} (x - x_0) = \frac{\beta_0 + \beta^T x}{\|\beta\|} = \frac{x^T \beta + \beta_0}{\|\beta\|}.$$

Separating hyperplane

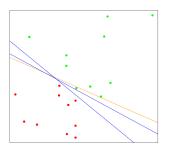
Suppose we have binary data with labels $\{+1,-1\}$. We want to separate data using an (affine) hyperplane.



ESL, Figure 4.14. (Orange = least-squares)

Separating hyperplane

Suppose we have binary data with labels $\{+1,-1\}$. We want to separate data using an (affine) hyperplane.

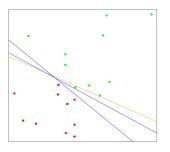


ESL, Figure 4.14. (Orange = least-squares)

Classify using
$$G(x) = \operatorname{sgn}(x^T \beta + \beta_0)$$
.

Separating hyperplane

Suppose we have binary data with labels $\{+1,-1\}$. We want to separate data using an (affine) hyperplane.

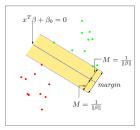


ESL, Figure 4.14. (Orange = least-squares)

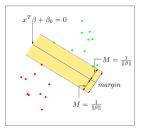
Classify using $G(x) = \operatorname{sgn}(x^T \beta + \beta_0)$.

- Separating hyperplane may not be unique.
- Separating hyperplane may not exist (i.e., data may not be separable).

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

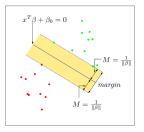


Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").



Data: $(y_i, x_i) \in \{+1, -1\} \times \mathbb{R}^p$ $(i = 1, \dots, n)$. Suppose $\beta_0 + \beta^T x$ is a separating hyperplane with $\|\beta\| = 1$.

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

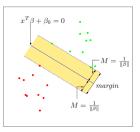


Data: $(y_i,x_i)\in\{+1,-1\}\times\mathbb{R}^p$ $(i=1,\ldots,n).$ Suppose $\beta_0+\beta^Tx$ is a separating hyperplane with $\|\beta\|=1.$ Note that:

$$y_i(x_i^T \beta + \beta_0) > 0 \Rightarrow \text{Correct classification}$$

 $y_i(x_i^T \beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification}$

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").



Data:
$$(y_i,x_i)\in\{+1,-1\}\times\mathbb{R}^p$$
 $(i=1,\ldots,n).$ Suppose $\beta_0+\beta^Tx$ is a separating hyperplane with $\|\beta\|=1.$ Note that:

$$y_i(x_i^T \beta + \beta_0) > 0 \Rightarrow \text{Correct classification}$$

 $y_i(x_i^T \beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification}$

Also, $|y_i(x_i^T\beta + \beta_0)| = \text{distance between } x \text{ and hyperplane (since } ||\beta|| = 1).$

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\| = 1} M \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge M \qquad (i = 1, \dots, n).$$

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, ||\beta|| = 1} M \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge M \qquad (i = 1, \dots, n).$$

We transform the problem into a usual form used in convex optimization.

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, ||\beta|| = 1} M \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge M \qquad (i = 1, \dots, n).$$

We transform the problem into a usual form used in convex optimization.

ullet We can remove $\|eta\|=1$ by replacing the constraint by

$$\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M, \quad \text{or equivalently,} \quad y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|.$$

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, ||\beta|| = 1} M \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge M \qquad (i = 1, \dots, n).$$

We transform the problem into a usual form used in convex optimization.

ullet We can remove $\|eta\|=1$ by replacing the constraint by

$$\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M, \quad \text{or equivalently,} \quad y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|.$$

• We can always rescale (β, β_0) so that $\|\beta\| = 1/M$:

$$\max_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{\|\beta\|} \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge 1 \qquad (i = 1, \dots, n).$$

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, ||\beta|| = 1} M \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge M \qquad (i = 1, \dots, n).$$

We transform the problem into a usual form used in convex optimization.

ullet We can remove $\|eta\|=1$ by replacing the constraint by

$$\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M, \quad \text{or equivalently,} \quad y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|.$$

• We can always rescale (β, β_0) so that $\|\beta\| = 1/M$:

$$\max_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{\|\beta\|} \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge 1 \qquad (i = 1, \dots, n).$$

Equivalently,

$$\min_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{2} \|\beta\|^2 \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge 1 \qquad (i = 1, \dots, n).$$

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, ||\beta|| = 1} M \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge M \qquad (i = 1, \dots, n).$$

We transform the problem into a usual form used in convex optimization.

ullet We can remove $\|eta\|=1$ by replacing the constraint by

$$\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M, \quad \text{or equivalently,} \quad y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|.$$

• We can always rescale (β, β_0) so that $\|\beta\| = 1/M$:

$$\max_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{\|\beta\|} \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge 1 \qquad (i = 1, \dots, n).$$

Equivalently,

$$\min_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{2} \|\beta\|^2 \quad \text{s.t.} \quad y_i(x_i^T \beta + \beta_0) \ge 1 \qquad (i = 1, \dots, n).$$

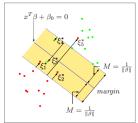
We now recognize the problem as a convex optimization problem with a quadratic objective, and linear inequality constraints.

• The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?

- The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error.

- The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error.
- We replace $y_i(x_i^T\beta + \beta_0) \ge M$ by

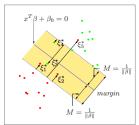
$$y_i(x_i^T \beta + \beta_0) \ge M(1 - \xi_i), \qquad \xi_i \ge 0,$$



• We add a constraint to keep control on the error

- The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error.
- We replace $y_i(x_i^T\beta + \beta_0) \ge M$ by

$$y_i(x_i^T \beta + \beta_0) \ge M(1 - \xi_i), \qquad \xi_i \ge 0,$$



• We add a constraint to keep control on the error

$$\sum_{i=1}^{n} \xi_i \le C \quad \text{for some fixed constant } C > 0.$$

Support vector machines (cont.)

The problem becomes:

$$\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\| = 1} M$$
subject to $y_i(x_i^T \beta + \beta_0) \ge M(1 - \xi_i)$

$$\xi_i \ge 0, \qquad \sum_{i=1}^n \xi_i \le C.$$

Support vector machines (cont.)

The problem becomes:

$$\max_{\beta_0, \beta \in \mathbb{R}^p, ||\beta|| = 1} M$$
subject to $y_i(x_i^T \beta + \beta_0) \ge M(1 - \xi_i)$

$$\xi_i \ge 0, \qquad \sum_{i=1}^n \xi_i \le C.$$

As before, we can transform the problem into its "normal" form:

$$\min_{\beta_0,\beta} \frac{1}{2} \|\beta\|^2$$
subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$

$$\xi_i \ge 0, \qquad \sum_{i=1}^n \xi_i \le C.$$

Problem can be solved using standard optimization packages.

Multiple classes of data

The SVM is a binary classifier. How can we classify data with K>2 classes?

Multiple classes of data

The SVM is a binary classifier. How can we classify data with K>2 classes?

• One versus all:(or one versus the rest) Fit the model to separate each class against the remaining classes. Label a new point x according to the model for which $x^T\beta + \beta_0$ is the largest.

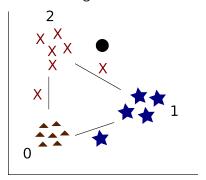
Need to fit the model K times.

Multiple classes of data (cont.)

- One versus one:
 - Train a classifier for each possible **pair** of classes. Note: There are $\binom{K}{2} = K(K-1)/2$ such pairs.
 - Classify a new points according to a majority vote: count the number of times the new point is assign to a given class, and pick the class with the largest number.

Multiple classes of data (cont.)

- One versus one:
 - **1** Train a classifier for each possible **pair** of classes. Note: There are $\binom{K}{2} = K(K-1)/2$ such pairs.
 - Classify a new points according to a majority vote: count the number of times the new point is assign to a given class, and pick the class with the largest number.



Need to fit the model $\binom{K}{2}$ times (computationally intensive).