MATH 637: Mathematical Techniques in Data Science
 Support vector machines

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware
April 6, 2020

Hyperplanes

Recall:

- A hyperplane H in $V=\mathbb{R}^{n}$ is a subspace of V of dimension $n-1$ (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^{n}$ via

$$
H=\left\{x \in \mathbb{R}^{n}: \beta^{T} x=0\right\}=\operatorname{span}(\beta)^{\perp} .
$$

Hyperplanes

Recall:

- A hyperplane H in $V=\mathbb{R}^{n}$ is a subspace of V of dimension $n-1$ (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^{n}$ via

$$
H=\left\{x \in \mathbb{R}^{n}: \beta^{T} x=0\right\}=\operatorname{span}(\beta)^{\perp}
$$

- An affine hyperplane H in \mathbb{R}^{n} is a subset of the form
where $\beta_{0} \in \mathbb{R}, \beta \in \mathbb{R}^{n}$.

$$
H=\left\{x \in \mathbb{R}^{n}: \beta_{0}+\beta^{T} x=0\right\}
$$

Recall:

- A hyperplane H in $V=\mathbb{R}^{n}$ is a subspace of V of dimension $n-1$ (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^{n}$ via

$$
H=\left\{x \in \mathbb{R}^{n}: \beta^{T} x=0\right\}=\operatorname{span}(\beta)^{\perp} .
$$

- An affine hyperplane H in \mathbb{R}^{n} is a subset of the form
where $\beta_{0} \in \mathbb{R}, \beta \in \mathbb{R}^{n}$.

$$
H=\left\{x \in \mathbb{R}^{n}: \beta_{0}+\beta^{T} x=0\right\}
$$

- We often use the term "hyperplane" for "affine hyperplane".

Hyperplanes (cont.)

Let

$$
H=\left\{x \in \mathbb{R}^{n}: \beta_{0}+\beta^{T} x=0\right\} .
$$

Let

$$
H=\left\{x \in \mathbb{R}^{n}: \beta_{0}+\beta^{T} x=0\right\}
$$

Note that for $x_{0}, x_{1} \in H$,

$$
\beta^{T}\left(x_{0}-x_{1}\right)=0 .
$$

Thus β is perpendicular to H. It follows that for $x \in \mathbb{R}^{n}$,

$$
d(x, H)=\frac{\beta^{T}}{\|\beta\|}\left(x-x_{0}\right)=\frac{\beta_{0}+\beta^{T} x}{\|\beta\|}=\frac{x^{T} \beta+\beta_{0}}{\|\beta\|} .
$$

Separating hyperplane

Suppose we have binary data with labels $\{+1,-1\}$. We want to separate data using an (affine) hyperplane.

ESL, Figure 4.14. (Orange $=$ least-squares)

Separating hyperplane

Suppose we have binary data with labels $\{+1,-1\}$. We want to separate data using an (affine) hyperplane.

ESL, Figure 4.14. (Orange $=$ least-squares)
Classify using $G(x)=\operatorname{sgn}\left(x^{T} \beta+\beta_{0}\right)$.

Separating hyperplane

Suppose we have binary data with labels $\{+1,-1\}$. We want to separate data using an (affine) hyperplane.

ESL, Figure 4.14. (Orange = least-squares)

Classify using $G(x)=\operatorname{sgn}\left(x^{T} \beta+\beta_{0}\right)$.

- Separating hyperplane may not be unique.
- Separating hyperplane may not exist (i.e., data may not be separable).

Margins

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

Margins

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

Data: $\left(y_{i}, x_{i}\right) \in\{+1,-1\} \times \mathbb{R}^{p} \quad(i=1, \ldots, n)$.
Suppose $\beta_{0}+\beta^{T} x$ is a separating hyperplane with $\|\beta\|=1$.

Margins

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

Data: $\left(y_{i}, x_{i}\right) \in\{+1,-1\} \times \mathbb{R}^{p} \quad(i=1, \ldots, n)$.
Suppose $\beta_{0}+\beta^{T} x$ is a separating hyperplane with $\|\beta\|=1$.
Note that:

$$
\begin{aligned}
& y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)>0 \Rightarrow \text { Correct classification } \\
& y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)<0 \Rightarrow \text { Incorrect classification }
\end{aligned}
$$

Margins

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

Data: $\left(y_{i}, x_{i}\right) \in\{+1,-1\} \times \mathbb{R}^{p} \quad(i=1, \ldots, n)$.
Suppose $\beta_{0}+\beta^{T} x$ is a separating hyperplane with $\|\beta\|=1$.
Note that:

$$
\begin{aligned}
& y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)>0 \Rightarrow \text { Correct classification } \\
& y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)<0 \Rightarrow \text { Incorrect classification }
\end{aligned}
$$

Also, $\left|y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)\right|=$ distance between x and hyperplane (since $\|\beta\|=1)$.

Margins (cont.)

Thus, if the data is separable, we can solve

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M \quad(i=1, \ldots, n) .
$$

Margins (cont.)

Thus, if the data is separable, we can solve

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M \quad(i=1, \ldots, n)
$$

We transform the problem into a usual form used in convex optimization.

Margins (cont.)

Thus, if the data is separable, we can solve

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M \quad(i=1, \ldots, n) .
$$

We transform the problem into a usual form used in convex optimization.

- We can remove $\|\beta\|=1$ by replacing the constraint by $\frac{1}{\|\beta\|} y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M, \quad$ or equivalently, $\quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\|\beta\|$.

Thus, if the data is separable, we can solve

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M \quad(i=1, \ldots, n)
$$

We transform the problem into a usual form used in convex optimization.

- We can remove $\|\beta\|=1$ by replacing the constraint by $\frac{1}{\|\beta\|} y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M, \quad$ or equivalently, $\quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\|\beta\|$.
- We can always rescale $\left(\beta, \beta_{0}\right)$ so that $\|\beta\|=1 / M$:

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p}} \frac{1}{\|\beta\|} \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1 \quad(i=1, \ldots, n)
$$

Thus, if the data is separable, we can solve

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M \quad(i=1, \ldots, n)
$$

We transform the problem into a usual form used in convex optimization.

- We can remove $\|\beta\|=1$ by replacing the constraint by $\frac{1}{\|\beta\|} y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M, \quad$ or equivalently, $\quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\|\beta\|$.
- We can always rescale $\left(\beta, \beta_{0}\right)$ so that $\|\beta\|=1 / M$:

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p}} \frac{1}{\|\beta\|} \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1 \quad(i=1, \ldots, n)
$$

Equivalently,

$$
\min _{\beta_{0}, \beta \in \mathbb{R}^{p}} \frac{1}{2}\|\beta\|^{2} \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1 \quad(i=1, \ldots, n) .
$$

Thus, if the data is separable, we can solve

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M \quad(i=1, \ldots, n) .
$$

We transform the problem into a usual form used in convex optimization.

- We can remove $\|\beta\|=1$ by replacing the constraint by $\frac{1}{\|\beta\|} y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M, \quad$ or equivalently, $\quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\|\beta\|$.
- We can always rescale $\left(\beta, \beta_{0}\right)$ so that $\|\beta\|=1 / M$:

$$
\max _{\beta_{0}, \beta \in \mathbb{R}^{p}} \frac{1}{\|\beta\|} \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1 \quad(i=1, \ldots, n)
$$

Equivalently,

$$
\min _{\beta_{0}, \beta \in \mathbb{R}^{p}} \frac{1}{2}\|\beta\|^{2} \quad \text { s.t. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1 \quad(i=1, \ldots, n)
$$

We now recognize the problem as a convex optimization problem with a quadratic objective, and linear inequality constraints.

Support vector machines

- The previous problem works well when the data is separable. What happens if there is no way to find a margin?

Support vector machines

- The previous problem works well when the data is separable. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error.

Support vector machines

- The previous problem works well when the data is separable. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error.
- We replace $y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M$ by

$$
y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\left(1-\xi_{i}\right), \quad \xi_{i} \geq 0
$$

- We add a constraint to keep control on the error

Support vector machines

- The previous problem works well when the data is separable. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error.
- We replace $y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M$ by

$$
y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\left(1-\xi_{i}\right), \quad \xi_{i} \geq 0
$$

- We add a constraint to keep control on the error

$$
\sum_{i=1}^{n} \xi_{i} \leq C \quad \text { for some fixed constant } C>0
$$

Support vector machines (cont.)

The problem becomes:

$$
\begin{aligned}
& \max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \\
& \text { subject to } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\left(1-\xi_{i}\right) \\
& \xi_{i} \geq 0, \quad \sum_{i=1}^{n} \xi_{i} \leq C .
\end{aligned}
$$

Support vector machines (cont.)

The problem becomes:

$$
\begin{aligned}
& \max _{\beta_{0}, \beta \in \mathbb{R}^{p},\|\beta\|=1} M \\
& \text { subject to } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M\left(1-\xi_{i}\right) \\
& \xi_{i} \geq 0, \quad \sum_{i=1}^{n} \xi_{i} \leq C .
\end{aligned}
$$

As before, we can transform the problem into its "normal" form:

$$
\begin{aligned}
& \min _{\beta_{0}, \beta} \frac{1}{2}\|\beta\|^{2} \\
& \text { subject to } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i} \\
& \xi_{i} \geq 0, \quad \sum_{i=1}^{n} \xi_{i} \leq C .
\end{aligned}
$$

Problem can be solved using standard optimization packages.

Multiple classes of data

The SVM is a binary classifier. How can we classify data with $K>2$ classes?

Multiple classes of data

The SVM is a binary classifier. How can we classify data with $K>2$ classes?

- One versus all:(or one versus the rest) Fit the model to separate each class against the remaining classes. Label a new point x according to the model for which $x^{T} \beta+\beta_{0}$ is the largest.

Need to fit the model K times.

Multiple classes of data (cont.)

- One versus one:
(1) Train a classifier for each possible pair of classes.

Note: There are $\binom{K}{2}=K(K-1) / 2$ such pairs.
(2) Classify a new points according to a majority vote: count the number of times the new point is assign to a given class, and pick the class with the largest number.

Multiple classes of data (cont.)

- One versus one:
(1) Train a classifier for each possible pair of classes.

Note: There are $\binom{K}{2}=K(K-1) / 2$ such pairs.
(2) Classify a new points according to a majority vote: count the number of times the new point is assign to a given class, and pick the class with the largest number.

Need to fit the model $\binom{K}{2}$ times (computationally intensive).

