MATH 637: Mathematical Techniques in Data Science

Support vector machines and kernels

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 10, 2020

Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:

Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:

What if the data is not separable?

Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:

What if the data is not separable? Can map into a high-dimensional space.

A brief intro to duality in optimization

Consider the (primal) problem:

$$
\begin{array}{rll}
\min _{x \in \mathcal{D} \subset \mathbb{R}^{n}} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p .
\end{array}
$$

Denote by p^{\star} the optimal value of the problem.

A brief intro to duality in optimization

Consider the (primal) problem:

$$
\begin{array}{rll}
\min _{x \in \mathcal{D} \subset \mathbb{R}^{n}} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p .
\end{array}
$$

Denote by p^{\star} the optimal value of the problem.
Lagrangian: $L: \mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
L(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x) .
$$

A brief intro to duality in optimization

Consider the (primal) problem:

$$
\begin{array}{rll}
\min _{x \in \mathcal{D} \subset \mathbb{R}^{n}} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p .
\end{array}
$$

Denote by p^{\star} the optimal value of the problem.
Lagrangian: $L: \mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
L(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x) .
$$

Lagrange dual function: $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
g(\lambda, \nu):=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu)
$$

A brief intro to duality in optimization

Consider the (primal) problem:

$$
\begin{array}{rll}
\min _{x \in \mathcal{D} \subset \mathbb{R}^{n}} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p .
\end{array}
$$

Denote by p^{\star} the optimal value of the problem.
Lagrangian: $L: \mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
L(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x) .
$$

Lagrange dual function: $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
g(\lambda, \nu):=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) .
$$

Claim: for every $\lambda \geq 0$,

$$
g(\lambda, \nu) \leq p^{\star}
$$

A brief intro to duality in optimization

Consider the (primal) problem:

$$
\begin{array}{rll}
\min _{x \in \mathcal{D} \subset \mathbb{R}^{n}} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p .
\end{array}
$$

Denote by p^{\star} the optimal value of the problem.
Lagrangian: $L: \mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
L(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x) .
$$

Lagrange dual function: $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
g(\lambda, \nu):=\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) .
$$

Claim: for every $\lambda \geq 0$,

$$
g(\lambda, \nu) \leq p^{\star}
$$

Proof. Assume \tilde{x} satisfies the constraints and $\lambda \geq 0$. Then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \mu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \mu)
$$

The result follows by optimizing over \tilde{x}.

A brief intro to duality in optimization

Dual problem:

$$
\begin{aligned}
& \max _{\lambda \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{p}} g(\lambda, \nu) \\
& \text { subject to } \lambda \geq 0 .
\end{aligned}
$$

A brief intro to duality in optimization

Dual problem:

$$
\begin{aligned}
& \max _{\lambda \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{p}} g(\lambda, \nu) \\
& \text { subject to } \lambda \geq 0 .
\end{aligned}
$$

Denote by d^{\star} the optimal value of the dual problem. Clearly

$$
d^{\star} \leq p^{\star} \quad \text { (weak duality) }
$$

A brief intro to duality in optimization

Dual problem:

$$
\begin{aligned}
& \max _{\lambda \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{p}} g(\lambda, \nu) \\
& \text { subject to } \lambda \geq 0 .
\end{aligned}
$$

Denote by d^{\star} the optimal value of the dual problem. Clearly

$$
d^{\star} \leq p^{\star} \quad \text { (weak duality) }
$$

Strong duality: $d^{\star}=p^{\star}$.

- Does not hold in general.
- Usually holds for convex problems.
- (See e.g. Slater's constraint qualification).

The kernel trick
Recall that SVM solves:

$$
\begin{aligned}
& \min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2} \\
& \text { subject to } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i} \\
& \sum_{i=1}^{n} \xi_{i}=C, \quad \xi_{i} \geq 0
\end{aligned}
$$

Recall that SVM solves:

$$
\begin{aligned}
& \min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2} \\
& \text { subject to } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i} \\
& \sum_{i=1}^{n} \xi_{i}=C, \quad \xi_{i} \geq 0 .
\end{aligned}
$$

The associated Lagrangian is
$L_{P}=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)-\left(1-\xi_{i}\right)\right]-\sum_{i=1}^{n} \mu_{i} \xi_{i}$,
which we minimize w.r.t. β, β_{0}, ξ.

Recall that SVM solves:

$$
\begin{aligned}
& \min _{\beta_{0}, \beta, \xi} \frac{1}{2}\|\beta\|^{2} \\
& \text { subject to } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i} \\
& \sum_{i=1}^{n} \xi_{i}=C, \quad \xi_{i} \geq 0
\end{aligned}
$$

The associated Lagrangian is
$L_{P}=\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)-\left(1-\xi_{i}\right)\right]-\sum_{i=1}^{n} \mu_{i} \xi_{i}$,
which we minimize w.r.t. β, β_{0}, ξ. Setting the respective derivatives to 0 , we obtain:

$$
\beta=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}, \quad 0=\sum_{i=1}^{n} \alpha_{i} y_{i}, \quad \alpha_{i}=C-\mu_{i} \quad(i=1, \ldots, n)
$$

Substituting into L_{P}, we obtain the Lagrange (dual) objective function:

$$
L_{D}=g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

Substituting into L_{P}, we obtain the Lagrange (dual) objective function:

$$
L_{D}=g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

The function L_{D} provides a lower bound on the original objective function at any feasible point (weak duality).

Substituting into L_{P}, we obtain the Lagrange (dual) objective function:

$$
L_{D}=g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

The function L_{D} provides a lower bound on the original objective function at any feasible point (weak duality).
The solution of the original SVM problem can be obtained by maximizing L_{D} under the previous constraints (strong duality).

Substituting into L_{P}, we obtain the Lagrange (dual) objective function:

$$
L_{D}=g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

The function L_{D} provides a lower bound on the original objective function at any feasible point (weak duality).
The solution of the original SVM problem can be obtained by maximizing L_{D} under the previous constraints (strong duality).
Now suppose $h: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$, transforming our features to

$$
h\left(x_{i}\right)=\left(h_{1}\left(x_{i}\right), \ldots, h_{m}\left(x_{i}\right)\right) \in \mathbb{R}^{m} .
$$

Substituting into L_{P}, we obtain the Lagrange (dual) objective function:

$$
L_{D}=g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

The function L_{D} provides a lower bound on the original objective function at any feasible point (weak duality).
The solution of the original SVM problem can be obtained by maximizing L_{D} under the previous constraints (strong duality).
Now suppose $h: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$, transforming our features to

$$
h\left(x_{i}\right)=\left(h_{1}\left(x_{i}\right), \ldots, h_{m}\left(x_{i}\right)\right) \in \mathbb{R}^{m}
$$

The Lagrange dual function becomes:

$$
L_{D}=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{h}\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \mathbf{h}\left(\mathbf{x}_{\mathbf{j}}\right)
$$

Substituting into L_{P}, we obtain the Lagrange (dual) objective function:

$$
L_{D}=g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}
$$

The function L_{D} provides a lower bound on the original objective function at any feasible point (weak duality).
The solution of the original SVM problem can be obtained by maximizing L_{D} under the previous constraints (strong duality).
Now suppose $h: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$, transforming our features to

$$
h\left(x_{i}\right)=\left(h_{1}\left(x_{i}\right), \ldots, h_{m}\left(x_{i}\right)\right) \in \mathbb{R}^{m} .
$$

The Lagrange dual function becomes:

$$
L_{D}=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{h}\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \mathbf{h}\left(\mathbf{x}_{\mathbf{j}}\right)
$$

Important observation: L_{D} only depends on $\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle$.

Positive definite kernels

Important observation: L_{D} only depends on $\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle$.

Positive definite kernels

Important observation: L_{D} only depends on $\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle$.
In fact, we don't even need to specify h, we only need:

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle .
$$

Important observation: L_{D} only depends on $\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle$.
In fact, we don't even need to specify h, we only need:

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle .
$$

Question: Given $K: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, when can we guarantee that

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle
$$

for some function h ?

Important observation: L_{D} only depends on $\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle$.
In fact, we don't even need to specify h, we only need:

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle .
$$

Question: Given $K: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, when can we guarantee that

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle
$$

for some function h ?
Observation: Suppose K has the desired form. Then, for $x_{1}, \ldots, x_{N} \in \mathbb{R}^{p}$, and $v_{i}:=h\left(x_{i}\right)$,

$$
\begin{aligned}
\left(K\left(x_{i}, x_{j}\right)\right) & =\left(\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle\right) \\
& =\left(\left\langle v_{i}, v_{j}\right\rangle\right) \\
& =V^{T} V, \quad \text { where } V=\left(v_{1}^{T}, \ldots, v_{N}^{T}\right) .
\end{aligned}
$$

Important observation: L_{D} only depends on $\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle$.
In fact, we don't even need to specify h, we only need:

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle .
$$

Question: Given $K: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, when can we guarantee that

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle
$$

for some function h ?
Observation: Suppose K has the desired form. Then, for $x_{1}, \ldots, x_{N} \in \mathbb{R}^{p}$, and $v_{i}:=h\left(x_{i}\right)$,

$$
\begin{aligned}
\left(K\left(x_{i}, x_{j}\right)\right) & =\left(\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle\right) \\
& =\left(\left\langle v_{i}, v_{j}\right\rangle\right) \\
& =V^{T} V, \quad \text { where } V=\left(v_{1}^{T}, \ldots, v_{N}^{T}\right) .
\end{aligned}
$$

Conclusion: the matrix $\left(K\left(x_{i}, x_{j}\right)\right)$ is positive semidefinite.

Positive definite kernels (cont.)

- Necessary condition to have $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$:

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is psd }
$$

for any x_{1}, \ldots, x_{N}, and any $N \geq 1$.

Positive definite kernels (cont.)

- Necessary condition to have $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$:

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is psd }
$$

for any x_{1}, \ldots, x_{N}, and any $N \geq 1$.

- Note also that $K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right)$ if $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$.
- Necessary condition to have $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$:

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is psd }
$$

for any x_{1}, \ldots, x_{N}, and any $N \geq 1$.

- Note also that $K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right)$ if $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is said to be a positive (semi)definite kernel if

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is positive (semi)definite }
$$

for all $x_{1}, \ldots, x_{N} \in \mathcal{X}$ and all $N \geq 1$.

- Necessary condition to have $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$:

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is psd }
$$

for any x_{1}, \ldots, x_{N}, and any $N \geq 1$.

- Note also that $K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right)$ if $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is said to be a positive (semi)definite kernel if

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is positive (semi)definite }
$$

for all $x_{1}, \ldots, x_{N} \in \mathcal{X}$ and all $N \geq 1$.
Theorem. Let \mathcal{X} and let $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel on \mathcal{X}. Then there exists a Hilbert space \mathcal{H} and a map $h: \mathcal{X} \rightarrow \mathcal{H}$ such that

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

- Necessary condition to have $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$:

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is psd }
$$

for any x_{1}, \ldots, x_{N}, and any $N \geq 1$.

- Note also that $K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right)$ if $K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is said to be a positive (semi)definite kernel if

$$
\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N} \text { is positive (semi)definite }
$$

for all $x_{1}, \ldots, x_{N} \in \mathcal{X}$ and all $N \geq 1$.
Theorem. Let \mathcal{X} and let $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel on \mathcal{X}. Then there exists a Hilbert space \mathcal{H} and a map $h: \mathcal{X} \rightarrow \mathcal{H}$ such that

$$
K\left(x, x^{\prime}\right)=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

Moral: Positive definite kernels arise as $\left\langle h(x), h\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$.

(Some of the) Details

- A reproducing kernel Hilbert space (RKHS) over a set \mathcal{X} is a Hilbert space \mathcal{H} of functions on \mathcal{X} such that for each $x \in \mathcal{X}$, there is a function $k_{x} \in \mathcal{H}$ such that

$$
\left\langle f, k_{x}\right\rangle_{\mathcal{H}}=f(x) \quad \forall f \in \mathcal{H}
$$

(Some of the) Details

- A reproducing kernel Hilbert space (RKHS) over a set \mathcal{X} is a Hilbert space \mathcal{H} of functions on \mathcal{X} such that for each $x \in \mathcal{X}$, there is a function $k_{x} \in \mathcal{H}$ such that

$$
\left\langle f, k_{x}\right\rangle_{\mathcal{H}}=f(x) \quad \forall f \in \mathcal{H}
$$

Write $k(\cdot, x):=k_{x}(\cdot)(k=$ the reproducing kernel of $\mathcal{H})$.

(Some of the) Details

- A reproducing kernel Hilbert space (RKHS) over a set \mathcal{X} is a Hilbert space \mathcal{H} of functions on \mathcal{X} such that for each $x \in \mathcal{X}$, there is a function $k_{x} \in \mathcal{H}$ such that

$$
\left\langle f, k_{x}\right\rangle_{\mathcal{H}}=f(x) \quad \forall f \in \mathcal{H}
$$

Write $k(\cdot, x):=k_{x}(\cdot)(k=$ the reproducing kernel of $\mathcal{H})$.

- One can show that \mathcal{H} is a RKHS over \mathcal{X} iff the evaluation functionals $\Lambda_{x}: \mathcal{H} \rightarrow \mathbb{C}$

$$
f \mapsto \Lambda_{x}(f)=f(x)
$$

are continuous on \mathcal{H} (use Riesz's representation theorem).

Details (cont.)

Theorem: Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel. Then there exists a RKHS \mathcal{H}_{k} over \mathcal{X} such that
(1) $k(\cdot, x) \in \mathcal{H}_{k}$ for all $x \in \mathcal{X}$.
(2) $\operatorname{span}(k(\cdot, x): x \in \mathcal{X})$ is dense in \mathcal{H}_{k}.
(3) k is a reproducing kernel on \mathcal{H}_{k}.

Details (cont.)

Theorem: Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel. Then there exists a RKHS \mathcal{H}_{k} over \mathcal{X} such that
(1) $k(\cdot, x) \in \mathcal{H}_{k}$ for all $x \in \mathcal{X}$.
(2) $\operatorname{span}(k(\cdot, x): x \in \mathcal{X})$ is dense in \mathcal{H}_{k}.
(3) k is a reproducing kernel on \mathcal{H}_{k}.

Now, define $h: \mathcal{X} \rightarrow \mathcal{H}_{k}$ by

$$
h(x):=k(\cdot, x)
$$

Details (cont.)

Theorem: Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel. Then there exists a RKHS \mathcal{H}_{k} over \mathcal{X} such that
(1) $k(\cdot, x) \in \mathcal{H}_{k}$ for all $x \in \mathcal{X}$.
(2) $\operatorname{span}(k(\cdot, x): x \in \mathcal{X})$ is dense in \mathcal{H}_{k}.
(3) k is a reproducing kernel on \mathcal{H}_{k}.

Now, define $h: \mathcal{X} \rightarrow \mathcal{H}_{k}$ by

$$
h(x):=k(\cdot, x)
$$

Then

$$
\left\langle h(x), h\left(x^{\prime}\right)\right\rangle_{\mathcal{H}_{k}}=\left\langle k(\cdot, x), k\left(\cdot, x^{\prime}\right)\right\rangle_{\mathcal{H}_{k}}=k\left(x, x^{\prime}\right)
$$

Back to SVM

We can replace h by any positive definite kernel in the SVM problem:

$$
\begin{aligned}
L_{D} & =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{h}\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \mathbf{h}\left(\mathbf{x}_{\mathbf{j}}\right) \\
& =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{K}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)
\end{aligned}
$$

Back to SVM

We can replace h by any positive definite kernel in the SVM problem:

$$
\begin{aligned}
L_{D} & =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{h}\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \mathbf{h}\left(\mathbf{x}_{\mathbf{j}}\right) \\
& =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{K}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)
\end{aligned}
$$

Three popular choice in the SVM literature:

$$
\begin{aligned}
K\left(x, x^{\prime}\right) & =e^{-\gamma\left\|x-x^{\prime}\right\|_{2}^{2}} \quad(\text { Gaussian kernel }) \\
K\left(x, x^{\prime}\right) & =\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{d} \quad(d \text {-th degree polynomial) } \\
K\left(x, x^{\prime}\right) & =\tanh \left(\kappa_{1}\left\langle x, x^{\prime}\right\rangle+\kappa_{2}\right) \quad \text { (Neural networks). }
\end{aligned}
$$

Example: decision function

SVM - Degree-4 Polynomial in Feature Space

ESL, Figure 12.3 (solid black line $=$ decision boundary, dotted line $=$ margin).

