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Decision trees

Tree-based methods:
Partition the feature space into a set of rectangles.
Fit a simple model (e.g. a constant) in each rectangle.
Conceptually simple yet powerful.

Izenman, 2013, Figure 9.1.
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Example: spam data

ESL, Figure 9.5.
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Decision trees

Advantages:
Often mimics human decision-making process (e.g. doctor
examining patient).
Very easy to explain and interpret.
Can handle both regression and classification problems.

Disadvantage:
Basic implementation is generally not competitive compared to
other methods.

However, by aggregating many decision trees and using other
variants, one can improve the performance significantly.
Such techniques lead to state-of-the-art models.
However, in doing so, one loses the easy interpretability of

decision trees.
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Binary decision trees

To simplify, we will only consider binary decision trees.

ESL, Figure 9.2.

Top Left: Not binary. Top Right: binary.

Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.
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How to grow a decision tree?

Regression tree:
Data: y ∈ Rn, X ∈ Rn×p.
Each observation: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Suppose we have a partition of Rp into M regions R1, . . . , Rm.
We predict the response using a constant on each Ri:

f(x) =

m∑
i=1

ci · 1x∈Ri .

In order to minimize
∑n

i=1(yi − f(xi))2, one needs to choose:

ĉi = ave(yj : xj ∈ Ri).

How do we determine the regions Ri, i.e., how do we “grow” the
tree?
We need to decide:

1 Which variable to split.
2 Where to split that variable.
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Growing a tree

Finding a (globally) optimal tree is generally computationally
infeasible.
We use a greedy algorithm.

Consider a splitting variable j ∈ {1, . . . , p} and splitting point
s ∈ R.
Define the two half-planes:

R1(j, s) := {x ∈ Rp : xj ≤ s}, R2(j, s) := {x ∈ Rp : xj > s}.
We choose j, s to minimize

min
j,s

min
c1∈R

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈R2(j,s)

(yi − c2)2
 .

The determination of the splitting point s can be done very
quickly.
Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.
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Stopping rules and pruning

Generally, the process is stopped for a given region when there
are less than 5 observations in that region.

Problem with previous methodology:
Likely to overfit the data.
Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and the
prune it (better).

Weakest link pruning:
(a.k.a cost complexity pruning)
Let T ⊂ T0 be a subtree of T0 with |T |
terminal nodes. For α > 0, define:

Cα(T ) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi−ŷRm)
2+α·|T |.

Pick a subtree minimizing Cα(T ).
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Pruning (cont.)

Pick a subtree T ⊂ T0 minimizing:

Cα(T ) :=

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)
2 + α · |T |.

(Here, ŷRm =average response for observations in Rm.)

α is a tuning parameter.
Trade-off between fit of the model, and tree complexity.
Choose α using cross-validation.

Once α has been chosen by CV, use whole dataset to find the tree
corresponding to that value.
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Classification trees

So far, we discussed regression trees (continuous output).

We can easily modify the methodology to predict a categorical
output.
We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box Ri to
minimize the sum of squares in that region:

min
c∈R

∑
xi∈Ri

(yi − c)2.

As a result, we choose:

ĉi =
1

Ni

∑
xk∈Ri

yk,

where Ni denotes the number of observations in Ri.
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Classification trees (cont.)

Similarly, when the output is categorical, we can count the
proportion of class k observations in node i:

p̂ik =
1

Ni

∑
xl∈Ri

1yl∈Ri .

We then classify the observations in node i using a majority vote:

k(i) := argmax
k

p̂ik.

Different measures are commonly used to determine how good a
given partition is (and how to split a given partition):

1 Misclassification error: 1
Ni

∑
xl∈Ri

1yl 6=k(i) = 1− p̂i,k(i).
2 Gini index:

∑K
k=1 p̂ik(1− p̂ik) = 1−

∑K
k=1 p̂

2
ik.

(Probability that a randomly chosen point is incorrectly classified.)
3 Entropy: −

∑K
k=1 p̂ik log p̂ik.

(Measure of “disorder” in a given category.)
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Classification trees (cont.)
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Example

Let us focus on the top box.

(Gini index) Error from classifying according to proportions:
P (error) = P (error|green)P (green) + P (error|blue)P (blue) + P (error|red)P (red)

= 3/7 · 4/7 + 6/7 · 1/7 + 5/7 · 2/7 = 4/7.

(Entropy) The probability distribution associated to the top box:
(4/7, 2/7, 1/7).

Entropy = −(4/7) log2(4/7)− (2/7) log2(2/7)− (1/7) log2(1/7) ≈ 1.38.

Best case possible: (1, 0, 0), (0, 1, 0), (0, 0, 1). Entropy = 0.
Worst case possible (1/3, 1/3, 1/3). Entropy = 1.58.
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Case study: Pima Indians Diabetes (Izenman, 2013)

Pima Indian (nativa American) population lives near Phoenix,
Arizona.
The diversion of the water and the introduction of non-native
diet had devastating effects on the health of the people. They
have the highest prevalence of type 2 diabetes in the world,
much more than is observed in other U.S. populations. They
have been the subject of intensive study of diabetes. 1

Patients listed in the dataset are females at least 21 years old
of Pima Indian heritage.
8 input variables (e.g. number of times pregnant, body mass
index, plasma glucose concentration, etc.).

1Wikipedia
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Case study (cont.)

Classification tree for the Pima indians diabetes data. Impurity measure = Gini index. (Izenman, Figure 9.5.)
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