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Decision trees

Tree-based methods:

@ Partition the feature space into a set of rectangles.

e Fit a simple model (e.g. a constant) in each rectangle.

@ Conceptually simple yet powerful.
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Example: spam data

ESL, Figure 9.5.
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Decision trees

Advantages:

@ Often mimics human decision-making process (e.g. doctor
examining patient).

@ Very easy to explain and interpret.

@ Can handle both regression and classification problems.
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Decision trees

Advantages:

@ Often mimics human decision-making process (e.g. doctor
examining patient).

@ Very easy to explain and interpret.
@ Can handle both regression and classification problems.
Disadvantage:

@ Basic implementation is generally not competitive compared to
other methods.

@ However, by aggregating many decision trees and using other
variants, one can improve the performance significantly.

@ Such techniques lead to state-of-the-art models.

@ However, in doing so, one loses the easy interpretability of
decision trees.
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Binary decision trees

To simplify, we will only consider binary decision trees.
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ESL, Figure 9.2

Top Left: Not binary. Top Right: binary.
Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.
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How to grow a decision tree?

Regression tree:

o Data: y € R", X € R"™P.
@ Each observation: (y;,x;) € RPTL i=1,... n.
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How to grow a decision tree?

Regression tree:
e Data: y € R", X € R™¥P,
@ Each observation: (y;,x;) € RPTL i=1,... n.
Suppose we have a partition of R? into M regions Ry, ..., Ry,.
We predict the response using a constant on each R;:

m

flz) = Zci “lyer;-
i=1

2

In order to minimize Y ;" (y; — f(z;))*, one needs to choose:

¢ = ave(y; 1 x; € Ry).

6/14



How to grow a decision tree?

Regression tree:

@ Data: y € R", X € R"*P.
@ Each observation: (y;,x;) € RPTL i=1,... n.
Suppose we have a partition of R? into M regions Ry, ..., Ry,.

We predict the response using a constant on each R;:

m

f@)=> ¢ lucn,

i=1
In order to minimize >, (y; — f(z;))?, one needs to choose:
¢ = ave(y; 1 x; € Ry).

How do we determine the regions R;, i.e., how do we “grow” the
tree?

6/14



How to grow a decision tree?

Regression tree:

e Data: y € R", X € R™¥P,

@ Each observation: (y;,x;) € RPTL i=1,... n.

Suppose we have a partition of R? into M regions Ry, ..., Ry,.
We predict the response using a constant on each R;:

m

f@)=> ¢ lucn,

i=1
In order to minimize >, (y; — f(z;))?, one needs to choose:
¢ = ave(y; 1 x; € Ry).

How do we determine the regions R;, i.e., how do we “grow” the
tree?
We need to decide:

@ Which variable to split.

@ Where to split that variable.
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e Finding a (globally) optimal tree is generally computationally
infeasible.
o We use a greedy algorithm.

7/14



e Finding a (globally) optimal tree is generally computationally
infeasible.
o We use a greedy algorithm.
Consider a splitting variable j € {1,...,p} and splitting point
s eR.

7/14



e Finding a (globally) optimal tree is generally computationally
infeasible.
o We use a greedy algorithm.
Consider a splitting variable j € {1,...,p} and splitting point
s eR.
Define the two half-planes:

Ri(j,s) =={x € RP : z; < s}, Ry(j,s) :={x € RP : x; > s}.

7/14



e Finding a (globally) optimal tree is generally computationally
infeasible.
o We use a greedy algorithm.
Consider a splitting variable j € {1,...,p} and splitting point
s eR.
Define the two half-planes:

Ri(j,s) =={x € RP : z; < s}, Ry(j,s) :={x € RP : x; > s}.
We choose j, s to minimize

min | min Z (yi — 61)2 + min Z (yi — 02)2

7,8 c1€ER ) c2€R )
miERl(],S) LL’Z'ERQ(],S)

@ The determination of the splitting point s can be done very
quickly.
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e Finding a (globally) optimal tree is generally computationally
infeasible.
o We use a greedy algorithm.
Consider a splitting variable j € {1,...,p} and splitting point
s eR.
Define the two half-planes:

Ri(j,s) =={x € RP : z; < s}, Ry(j,s) :={x € RP : x; > s}.

We choose j, s to minimize

. ) 2 . 2
min | min P i —
nin fmin > (-e)’+min Yo (i)
z;€R1(4,8) z;€R2(4,8)
@ The determination of the splitting point s can be done very
quickly.

@ Hence, determining the best pair (7, s) is feasible.

Repeat the same process to each block.
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Stopping rules and pruning

@ Generally, the process is stopped for a given region when there
are less than 5 observations in that region.
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Stopping rules and pruning

@ Generally, the process is stopped for a given region when there
are less than 5 observations in that region.

Problem with previous methodology:
o Likely to overfit the data.

@ Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and the
prune it (better).

@ Weakest link pruning:

(a-k.a cost complexity pruning)

Let T' C T be a subtree of Tj) with |T|

terminal nodes. For a > 0, define:
|T|

=3 Y widn) a7 B

m=1i:x;ERm

Pick a subtree minimizing C, (7).
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Pruning (cont.)

Pick a subtree T' C Ty minimizing:

7|

=Y ) Wi—0r.)>+a-|T).

m=114i:x;ERm

(Here, yr,, =average response for observations in R,,.)
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Pruning (cont.)

Pick a subtree T' C Ty minimizing:

7|

=Y ) Wi—0r.)>+a-|T).

m=114i:x;ERm

(Here, yr,, =average response for observations in R,,.)
@ « is a tuning parameter.
@ Trade-off between fit of the model, and tree complexity.

@ Choose a using cross-validation.

9/14



Pruning (cont.)

Pick a subtree T' C Ty minimizing:

7|

=Y > (Wi—9r,) o [T
m=1ix;€ERm
(Here, yr,, =average response for observations in R,,.)
@ « is a tuning parameter.
@ Trade-off between fit of the model, and tree complexity.
@ Choose a using cross-validation.

Once a has been chosen by CV, use whole dataset to find the tree
corresponding to that value.
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Classification trees

@ So far, we discussed regression trees (continuous output).
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minimize the sum of squares in that region:
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Classification trees

@ So far, we discussed regression trees (continuous output).

@ We can easily modify the methodology to predict a categorical
output.

@ We only need to modify our splitting and pruning criteria.

For continuous variables, we picked a constant in each box R; to
minimize the sum of squares in that region:

min (y: — ).
ceER
T, €ER;
As a result, we choose:
. 1
¢ = ﬁz Yk,
rLER;

where N; denotes the number of observations in R;.
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Classification trees (cont.)

Similarly, when the output is categorical, we can count the
proportion of class k observations in node i:

. 1
Pik = N, Z lyer;-
1 ER;
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Classification trees (cont.)

Similarly, when the output is categorical, we can count the
proportion of class k observations in node i:

R 1
p’ik’ = N E 1yl€Ri'
1
1 ER;

We then classify the observations in node i using a majority vote:

k(i) := argmax p;j.
k
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Classification trees (cont.)

Similarly, when the output is categorical, we can count the
proportion of class k observations in node i:

R 1
p’ik’ = N E 1yl€Ri'
1
1 ER;

We then classify the observations in node i using a majority vote:

k(i) := argmax p;j.
k

Different measures are commonly used to determine how good a
given partition is (and how to split a given partition):
@ Misclassification error: N% ZmleRi Ly k) = 1 = Dijki)-
« e K ~ N K A
@ Gini index: Y, pin(1 — pix) = 1 — Do, P
(Probability that a randomly chosen point is incorrectly classified.)
K ~ A
© Entropy: — ) ;. Pik 10g Dik-
(Measure of “disorder” in a given category.)
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Let us focus on the top box.
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Let us focus on the top box.

@ (Gini index) Error from classifying according to proportions:

P(error) = P(error|green) P(green) + P(error|blue) P(blue) + P(error|red)P(red)
=3/7-4)T+6/7-1)7+5/7-2/7=4/1.

o (Entropy) The probability distribution associated to the top box:

(4/7,2/7,1)7).

Entropy = —(4/7) loga(4/7) — (2/7) loga(2/7) — (1/7) logy(1/7) ~ 1.3,

Best case possible: (1,0,0),(0,1,0),(0,0,1). Entropy = 0.

Worst case possible (1/3,1/3,1/3). Entropy = 1.58. 1214



Case study: Pima Indians Diabetes (Izenman, 2013)

 Wikipedia

Pima Indian (nativa American) population lives near Phoenix,
Arizona.

The diversion of the water and the introduction of non-native
diet had devastating effects on the health of the people. They
have the highest prevalence of type 2 diabetes in the world,
much more than is observed in other U.S. populations. They
have been the subject of intensive study of diabetes. !

Patients listed in the dataset are females at least 21 years old
of Pima Indian heritage.

8 input variables (e.g. number of times pregnant, body mass
index, plasma glucose concentration, etc.).

13/14



Case study (cont.

glucose>=

diabetic
711118

normal diabetic
198/16 12/64
glucosg/
normal diabetic
457 2018

normal diabetic normal diabetic normal
2077 206 713 5120 1213

normal diabetic
10/3 3/5
Classification tree for the Pima indians diabetes data. Impurity measure = Gini index. (Izenman, Figure 9.5.)
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