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The bootstrap

We saw before that decision trees often overfit the data.
We will now discuss techniques that can be used to mitigate that

problem.

Bootstrapping: General statistical method that relies on
resampling data with replacement.
Idea: Given data (yi, xi), i = 1, . . . , n, construct bootstrap samples
by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3
(yi1 , xi1) (yj1 , xj1) (yk1 , xk1)
(yi2 , xi2) (yj2 , xj2) (yk2 , xk2)

...
...

...
(yin , xin) (yjn , xjn) (ykn , xkn)

Each bootstrap sample mimics the statistical properties of the
original data.
Often used to estimate parameter variability (or uncertainty).
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Bagging

Bagging:(bootstrap aggregation) Suppose we have a model
y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.

1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.
Can improve estimators significantly.

Note: Each bootstrap tree will typically involve different features
than the original, and might have a different number of terminal
nodes.
The bagged estimate is the average prediction at x from
these B trees.
For classification: Use a majority vote from the B trees.
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Example: trees with simulated data (ESL, Example 8.7.1)

Simulation:
N = 30 samples with p = 5 features.
Features from a standard Gaussian distribution with pairwise
correlation 0.95.
Y generated according to

P (Y = 1|X1 ≤ 0.5) = 0.2

P (Y = 1|X1 > 0.5) = 0.8.

A test sample of size 2, 000 was also generated using the same
model.
The test error for the original tree and the bagged tree are
reported.
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Example (cont.)

Bootstrap trees:

ESL, Figure 8.9.
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Example (cont.)

Test error:

Errors for the bagging example. (ESL, Figure 8.10.)

The orange points correspond to the consensus vote, while the green points average the probabilities.

Out-of-bag error: Mean prediction error on each training sample
xi, using only the trees that did not have xi in their bootstrap
sample.
Can be used to approximate the prediction error.
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Random forests

Idea of bagging: average many noisy but approximately
unbiased models, and hence reduce the variance.

However, the bootstrap trees are generally correlated.

Random forests improve the variance reduction of bagging by
reducing the correlation between the trees.

Achieved in the tree-growing process through random selection
of the input variables.

Popular method.
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Random forests (cont.)

Random forests: Each time a split in a tree is considered, a
random selection of m predictors is chosen as split candidates from
the full set of p predictors.

Typical value for m is
√
p.

We construct T1, . . . , TB trees using that method on bootstrap
samples. The random forest (regression) predictor is

f̂Brf (x) =
1

B

B∑
b=1

Tb(x).

For classification: use majority vote.
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Example (Izenman, 2013)

Diagnostic classification of four childhood tumors (Khan et al.,
2001):

Small, round, blue-cell tumors (SRBCTs) of childhood.
Four types of SRBCTs (EWS, BL, NB, RMS).
Tumors have a similar appearance.
Getting the diagnosis correct impacts directly upon the type of
treatment, therapy, and prognosis the patient receives.
Currently, no single clinical test that can discriminate between
these cancers.

Data:
83 cases (29 EWS, 11 BL, 18 NB, 25 RMS).
Gene expression data for 6, 567 genes, reduced to 2, 308 by
requiring a minimum intensity.
research.nhgri.nih.gov/microarray/Supplement.

A random forest was applied to these data using 500 fully grown
trees with m = 25 variables at each split.
Able to get a 0% Out-of-bag misclassification rate.

9/14
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Boosting

Like bagging, boosting is a general approach that can be applied to many
models. Combines weak learners into a single strong learner.

Boosting: Recursively fit trees to residuals. (Compensate the
shortcoming of previous model.)
Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.
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Boosting (cont.)

Can use many small trees (by choosing d small) and learn slowly (λ
small) to avoid overfitting.

Choosing the parameters:
1 Number of trees B: choose by cross-validation.
2 Number of splits: can use a small value (e.g. d = 1).
3 Learning rate: can use 0.01, 0.001. Note: A small λ will

generally require a larger B. . .

Gradient boosting: More generally, one can work with a general
loss function (instead of sum of squares) and replace the residuals
with the (negative) of the gradient of the loss function.
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Relative importance of predictor variables

The previous methodologies can improve decision trees
considerably.
However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help
understand a model with multiple trees.

Let T be a (binary) decision tree with J − 1 internal nodes.
At each internal node t, a variable Xv(t) is split, resulting in an
improvement ι̂2t in squared error.
We define a measure of relevance of Xl by

I2l (T ) :=
J−1∑
t=1

ι̂2t · I(v(t) = l).

In other words, we add-up the improvements at the nodes
where Xl is split.
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Relative importance of predictor variables (cont.)

Similarly, in a model obtained from M trees (e.g. bagging,
random forest), we use:

I2l =
1

M

M∑
m=1

I2l (Tm).

Taking the square root of the relevance measure, we obtain the
relevance of Xl.
Typically, we do not report the actual relevance of a variable. We

rather report the percentage of relevance of a given variable with
respect to the variable with the largest relevance.
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Relative importance of predictor for the spam data

ESL, Figure 10.6.
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