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Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.

Each neuron receives signals from other neurons via its many
dendrites (input).

Each neuron has a single axon (output).

Neuron make on average 7,000 synaptic connections.

Signals are sent via an electrochemical process.

When a neuron fires, it starts a chain reaction that propagates
information.

@ There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.
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Neurons (cont.)

@ Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.
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Neurons (cont.)

@ Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.

@ As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.
Can we construct a universal learning machine/algorithm?
@ Neural network models are inspired by neuroscience.
@ Use multiple layers of neurons to represent data.

@ Very popular in computer vision, natural language processing,
and many other fields.

@ Today, neural network models are often called deep learning.
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Single neuron model:
X1
Xy

hyyp(x)
X3

+1
Source: UFLDL Tutorial

Input: z1, 9,23 (and +1 intercept).
Output: hW,b(x) = f(WT:U) = f(Wlxl + Woxo + Waxs + b),
where f is the rectified linear unit (ReLU) function:

f(x) = max(0, z).

Other common choice for f are the sigmoid and the hyperbolic
tangent:

1 et —e™*

= tanh(z) = ———.

(o) = tanh(z) = S
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Neural networks (cont.)

The function f acts as an activation function.

RelLU Sigmoid tanh

5 1.0 1.0 -

4 0.8 - 0.5 4

31 0.6 -
0.0 -

21 0.4 -

11 0.2 1057

0 1 0.0 4 1.0 4

-5 0 5 -5 0 5 -5 0 5

Idea: Depending on the input of the neuron and the strength of the
links, the neuron “fires” or not.
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Neural network models

A neural networks model is obtained by hooking together many
neurons so that the output of one neuron becomes the input of
another neuron.

Layer Ly

+1

Layer L, Layer L,

Source: UFLDL tutorial
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A neural networks model is obtained by hooking together many
neurons so that the output of one neuron becomes the input of

another neuron.

Layer Ly

+1

Layer L, Layer L,

Source: UFLDL tutorial

Note: Each layer includes an intercept “+1" (or bias unit)

@ Leftmost layer = input layer.
@ Rightmost layer = output layer.
e Middle layers = hidden layers (not observed).

We will let n; denote the number of layers in our model (n; =3
in the above example). 7/12
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L,, = output layer.

° I/Vi(j) = weight associated with the connection between unit j

in layer [, and unit 7 in layer [ + 1. (Note the order of the
indices.)
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Layer L,

@ n; = number of layers.

@ We denote the layers by Lq,..., Ly, so L1 = input layer and
L,, = output layer.

° I/Vi(j) = weight associated with the connection between unit j
in layer [, and unit 7 in layer [ + 1. (Note the order of the
indices.)

° bgl)is the bias associated with unit ¢ in layer [ + 1.

In above example: (W,b) = (WM, oM W b)) Here
W) e R3S, W@ ¢ RX3, (1) € R3, b € R.
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hyyu(x)

Layer Ly

+1

Layer L, Layer L,
@
7

o We let agl) = x; (input).

@ We denote by a;’ the activation of unit i in layer .
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hw,,(x)

Layer Ly

+1

Layer L, Layer L,

e We denote by al@

o We let agl) = x; (input).

the activation of unit ¢ in layer [.

We have'
= f(Wn T+ W1(2)952 + Wl(S z3 +b )
= f(VV21 1+ W2(2)J}2 + VV2(3 3 + b2 )
= fWzy + W g + Wi 2 +0(Y)
s = o = FW D0 1 WO 1w 4 2
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Compact notation

@ In what follows, we will let zgl) = total weighted sum of inputs to

unit 7 in Iayer [ (including the bias term):

Z z 1) ajl 1) +b§lil) (1> 2).

10/12



Compact notation

@ In what follows, we will let zgl) = total weighted sum of inputs to

unit 7 in Iayer [ (including the bias term):

Z z 1) ajl 1) +b§lil) (1> 2).

o Note that that a§> = £,

10/12



Compact notation

@ In what follows, we will let zgl) = total weighted sum of inputs to

unit 7 in Iayer [ (including the bias term):

Z z 1) ajl 1) +b§lil) (1> 2).

o Note that that a§> = £,
@ For example:

-y Wi(f)xj +o) =123
j=1

10/12



Compact notation

@ In what follows, we will let zgl) = total weighted sum of inputs to

unit 7 in Iayer [ (including the bias term):

Z z 1) ajl 1) +b§lil) (1> 2).

o Note that that a§> = £,
@ For example:

-y Wi(f)xj +o) =123
j=1

We extend f elementwise: f([vi,ve,v3]) = [f(v1), f(v2), f(vs)].

10/12



Compact notation

@ In what follows, we will let zgl) = total weighted sum of inputs to
unit 7 in Iayer [ (including the bias term):

Z z1al1+b§171) (1> 2).

J

o Note that that a§> = £,
@ For example:

_ ZWi(jl)xj +o) =123

j=1

We extend f elementwise: f([vi,ve,v3]) = [f(v1), f(v2), f(vs)].
Using the above notation, we have:

22— g 4 pM
a? = f(z)

23 @@ 4 @
hwy = a® = f(z¥).
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Forward propagation

The previous process is called the forward propagation step.

11/12



Forward propagation

The previous process is called the forward propagation step.
o Recall that we defined a!) = z (the input).

11/12



Forward propagation

The previous process is called the forward propagation step.
o Recall that we defined a!) = z (the input).

@ The forward propagation can therefore be written as:

L) 0 4 0
a(lJrl) _ f(Z(lJrl)).

11/12



Forward propagation

The previous process is called the forward propagation step.
o Recall that we defined a!) = z (the input).

@ The forward propagation can therefore be written as:

L) 0 4 0
a(lJrl) _ f(Z(lJrl)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

11/12



Forward propagation

The previous process is called the forward propagation step.
o Recall that we defined a!) = z (the input).

@ The forward propagation can therefore be written as:

L) 0 4 0
a(lJrl) _ f(Z(lJrl)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

o Can use different architectures (i.e., pattens of connectivity
between neurons).

11/12



Forward propagation

The previous process is called the forward propagation step.
o Recall that we defined a!) = z (the input).

@ The forward propagation can therefore be written as:

L) 0 4 0
a(lJrl) _ f(Z(lJrl)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

o Can use different architectures (i.e., pattens of connectivity
between neurons).

e Typically, we use multiple densely connected layers.

11/12



Forward propagation

The previous process is called the forward propagation step.
o Recall that we defined a!) = z (the input).

@ The forward propagation can therefore be written as:

L) 0 4 0
a(lJrl) _ f(Z(lJrl)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

o Can use different architectures (i.e., pattens of connectivity
between neurons).

e Typically, we use multiple densely connected layers.

@ In that case, we obtain a feedforward neural network (no
directed loops or cycles).
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Multiple outputs

Neural networks may also have multiple outputs:

—
hyp(x)
—
+ Layer L,
i LayerL,
Layer L, Layer L,

Source: UFLDL tutorial
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Multiple outputs

Neural networks may also have multiple outputs:

—_—

hygulx)

—

+ LayerL,

+1

LayerL,
Layer L, Layer L,

Source: UFLDL tutorial

o To train this network, we need observations (z(*), (")) with
y® e R2.

@ Useful for applications where the output is multivariate
(e.g. medical diagnosis application where output is whether or
not a patient has a list of diseases).

@ Useful to encode or compress information.
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