MATH 637: Mathematical Techniques in Data Science Neural networks I

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 22, 2020

https://www.deeplearningbook.org/

- Our brain contains about 86 billion neurons.

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).
- Each neuron has a single axon (output).

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).
- Each neuron has a single axon (output).
- Neuron make on average 7,000 synaptic connections.

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).
- Each neuron has a single axon (output).
- Neuron make on average 7,000 synaptic connections.
- Signals are sent via an electrochemical process.

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).
- Each neuron has a single axon (output).
- Neuron make on average 7,000 synaptic connections.
- Signals are sent via an electrochemical process.
- When a neuron fires, it starts a chain reaction that propagates information.

Neuron representation (Source: Wiki).

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).
- Each neuron has a single axon (output).
- Neuron make on average 7,000 synaptic connections.
- Signals are sent via an electrochemical process.
- When a neuron fires, it starts a chain reaction that propagates information.
- There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.

- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- As of today, relating brain networks to functions is still a very challenging problem, and a very active area of research.
- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- As of today, relating brain networks to functions is still a very challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?

- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- As of today, relating brain networks to functions is still a very challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?

- Neural network models are inspired by neuroscience.
- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- As of today, relating brain networks to functions is still a very challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?

- Neural network models are inspired by neuroscience.
- Use multiple layers of neurons to represent data.
- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- As of today, relating brain networks to functions is still a very challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?

- Neural network models are inspired by neuroscience.
- Use multiple layers of neurons to represent data.
- Very popular in computer vision, natural language processing, and many other fields.
- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- As of today, relating brain networks to functions is still a very challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?

- Neural network models are inspired by neuroscience.
- Use multiple layers of neurons to represent data.
- Very popular in computer vision, natural language processing, and many other fields.
- Today, neural network models are often called deep learning.

Neural networks

Single neuron model:

Neural networks

Single neuron model:

Input: x_{1}, x_{2}, x_{3} (and +1 intercept).

Neural networks

Single neuron model:

Input: x_{1}, x_{2}, x_{3} (and +1 intercept).
Output: $h_{W, b}(x)=f\left(W^{T} x\right)=f\left(W_{1} x_{1}+W_{2} x_{2}+W_{3} x_{3}+b\right)$, where f is the rectified linear unit (ReLU) function:

$$
f(x)=\max (0, x)
$$

Neural networks

Single neuron model:

Source: UFLDL Tutorial
Input: x_{1}, x_{2}, x_{3} (and +1 intercept).
Output: $h_{W, b}(x)=f\left(W^{T} x\right)=f\left(W_{1} x_{1}+W_{2} x_{2}+W_{3} x_{3}+b\right)$, where f is the rectified linear unit (ReLU) function:

$$
f(x)=\max (0, x)
$$

Other common choice for f are the sigmoid and the hyperbolic tangent:

$$
f(x)=\frac{1}{1+e^{-x}} \quad f(x)=\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

Neural networks (cont.)

The function f acts as an activation function.

Idea: Depending on the input of the neuron and the strength of the links, the neuron "fires" or not.

Neural network models

A neural networks model is obtained by hooking together many neurons so that the output of one neuron becomes the input of another neuron.

Source: UFLDL tutorial

Neural network models

A neural networks model is obtained by hooking together many neurons so that the output of one neuron becomes the input of another neuron.

Source: UFLDL tutorial
Note: Each layer includes an intercept " +1 " (or bias unit)

Neural network models

A neural networks model is obtained by hooking together many neurons so that the output of one neuron becomes the input of another neuron.

Source: UFLDL tutorial
Note: Each layer includes an intercept " +1 " (or bias unit)

- Leftmost layer $=$ input layer.
- Rightmost layer $=$ output layer.
- Middle layers $=$ hidden layers (not observed).

Neural network models

A neural networks model is obtained by hooking together many neurons so that the output of one neuron becomes the input of another neuron.

Source: UFLDL tutorial
Note: Each layer includes an intercept " +1 " (or bias unit)

- Leftmost layer = input layer.
- Rightmost layer $=$ output layer.
- Middle layers $=$ hidden layers (not observed).

We will let n_{l} denote the number of layers in our model ($n_{l}=3$ in the above example).

Notation

- $n_{l}=$ number of layers.

Notation

- $n_{l}=$ number of layers.
- We denote the layers by $L_{1}, \ldots, L_{n_{l}}$, so $L_{1}=$ input layer and $L_{n_{l}}=$ output layer.

Notation

- $n_{l}=$ number of layers.
- We denote the layers by $L_{1}, \ldots, L_{n_{l}}$, so $L_{1}=$ input layer and $L_{n_{l}}=$ output layer.
- $W_{i j}^{(l)}=$ weight associated with the connection between unit j in layer l, and unit i in layer $l+1$. (Note the order of the indices.)

Notation

- $n_{l}=$ number of layers.
- We denote the layers by $L_{1}, \ldots, L_{n_{l}}$, so $L_{1}=$ input layer and $L_{n_{l}}=$ output layer.
- $W_{i j}^{(l)}=$ weight associated with the connection between unit j in layer l, and unit i in layer $l+1$. (Note the order of the indices.)
- $b_{i}^{(l)}$ is the bias associated with unit i in layer $l+1$.

Notation

- $n_{l}=$ number of layers.
- We denote the layers by $L_{1}, \ldots, L_{n_{l}}$, so $L_{1}=$ input layer and $L_{n_{l}}=$ output layer.
- $W_{i j}^{(l)}=$ weight associated with the connection between unit j in layer l, and unit i in layer $l+1$. (Note the order of the indices.)
- $b_{i}^{(l)}$ is the bias associated with unit i in layer $l+1$.

In above example: $(W, b)=\left(W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}\right)$. Here
$W^{(1)} \in \mathbb{R}^{3 \times 3}, W^{(2)} \in \mathbb{R}^{1 \times 3}, b^{(1)} \in \mathbb{R}^{3}, b^{(2)} \in \mathbb{R}$.

Activation

- We denote by $a_{i}^{(l)}$ the activation of unit i in layer l.
- We let $a_{i}^{(1)}=x_{i}$ (input).

Activation

- We denote by $a_{i}^{(l)}$ the activation of unit i in layer l.
- We let $a_{i}^{(1)}=x_{i}$ (input).

We have:

$$
\begin{aligned}
a_{1}^{(2)} & =f\left(W_{11}^{(1)} x_{1}+W_{12}^{(1)} x_{2}+W_{13}^{(1)} x_{3}+b_{1}^{(1)}\right) \\
a_{2}^{(2)} & =f\left(W_{21}^{(1)} x_{1}+W_{22}^{(1)} x_{2}+W_{23}^{(1)} x_{3}+b_{2}^{(1)}\right) \\
a_{3}^{(2)} & =f\left(W_{31}^{(1)} x_{1}+W_{32}^{(1)} x_{2}+W_{33}^{(1)} x_{3}+b_{3}^{(1)}\right) \\
h_{W, b} & =a_{1}^{(3)}=f\left(W_{11}^{(2)} a_{1}^{(2)}+W_{12}^{(2)} a_{2}^{(2)}+W_{13}^{(2)} a_{3}^{(2)}+b_{1}^{(2)}\right) .
\end{aligned}
$$

Compact notation

- In what follows, we will let $z_{i}^{(l)}=$ total weighted sum of inputs to unit i in layer l (including the bias term):

$$
z_{i}^{(l)}:=\sum_{j} W_{i j}^{(l-1)} a_{j}^{(l-1)}+b_{i}^{(l-1)} \quad(l \geq 2)
$$

Compact notation

- In what follows, we will let $z_{i}^{(l)}=$ total weighted sum of inputs to unit i in layer l (including the bias term):

$$
z_{i}^{(l)}:=\sum_{j} W_{i j}^{(l-1)} a_{j}^{(l-1)}+b_{i}^{(l-1)} \quad(l \geq 2)
$$

- Note that that $a_{i}^{(l)}=f\left(z_{i}^{(l)}\right)$.

Compact notation

- In what follows, we will let $z_{i}^{(l)}=$ total weighted sum of inputs to unit i in layer l (including the bias term):

$$
z_{i}^{(l)}:=\sum_{j} W_{i j}^{(l-1)} a_{j}^{(l-1)}+b_{i}^{(l-1)} \quad(l \geq 2)
$$

- Note that that $a_{i}^{(l)}=f\left(z_{i}^{(l)}\right)$.
- For example:

$$
z_{i}^{(2)}=\sum_{j=1}^{3} W_{i j}^{(1)} x_{j}+b_{i}^{(1)} \quad i=1,2,3
$$

Compact notation

- In what follows, we will let $z_{i}^{(l)}=$ total weighted sum of inputs to unit i in layer l (including the bias term):

$$
z_{i}^{(l)}:=\sum_{j} W_{i j}^{(l-1)} a_{j}^{(l-1)}+b_{i}^{(l-1)} \quad(l \geq 2)
$$

- Note that that $a_{i}^{(l)}=f\left(z_{i}^{(l)}\right)$.
- For example:

$$
z_{i}^{(2)}=\sum_{j=1}^{3} W_{i j}^{(1)} x_{j}+b_{i}^{(1)} \quad i=1,2,3
$$

We extend f elementwise: $f\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\left[f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right)\right]$.

Compact notation

- In what follows, we will let $z_{i}^{(l)}=$ total weighted sum of inputs to unit i in layer l (including the bias term):

$$
z_{i}^{(l)}:=\sum_{j} W_{i j}^{(l-1)} a_{j}^{(l-1)}+b_{i}^{(l-1)} \quad(l \geq 2)
$$

- Note that that $a_{i}^{(l)}=f\left(z_{i}^{(l)}\right)$.
- For example:

$$
z_{i}^{(2)}=\sum_{j=1}^{3} W_{i j}^{(1)} x_{j}+b_{i}^{(1)} \quad i=1,2,3
$$

We extend f elementwise: $f\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\left[f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right)\right]$. Using the above notation, we have:

$$
\begin{aligned}
z^{(2)} & =W^{(1)} x+b^{(1)} \\
a^{(2)} & =f\left(z^{(2)}\right) \\
z^{(3)} & =W^{(2)} a^{(2)}+b^{(2)} \\
h_{W, b} & =a^{(3)}=f\left(z^{(3)}\right)
\end{aligned}
$$

Forward propagation

The previous process is called the forward propagation step.

The previous process is called the forward propagation step.

- Recall that we defined $a^{(1)}=x$ (the input).

The previous process is called the forward propagation step.

- Recall that we defined $a^{(1)}=x$ (the input).
- The forward propagation can therefore be written as:

$$
\begin{aligned}
& z^{(l+1)}=W^{(l)} a^{(l)}+b^{(l)} \\
& a^{(l+1)}=f\left(z^{(l+1)}\right) .
\end{aligned}
$$

The previous process is called the forward propagation step.

- Recall that we defined $a^{(1)}=x$ (the input).
- The forward propagation can therefore be written as:

$$
\begin{aligned}
z^{(l+1)} & =W^{(l)} a^{(l)}+b^{(l)} \\
a^{(l+1)} & =f\left(z^{(l+1)}\right) .
\end{aligned}
$$

Using matrix-vector operations, we can take advantage of fast linear algebra routines to quickly perform calculations in our network.

The previous process is called the forward propagation step.

- Recall that we defined $a^{(1)}=x$ (the input).
- The forward propagation can therefore be written as:

$$
\begin{aligned}
& z^{(l+1)}=W^{(l)} a^{(l)}+b^{(l)} \\
& a^{(l+1)}=f\left(z^{(l+1)}\right) .
\end{aligned}
$$

Using matrix-vector operations, we can take advantage of fast linear algebra routines to quickly perform calculations in our network.

- Can use different architectures (i.e., pattens of connectivity between neurons).

The previous process is called the forward propagation step.

- Recall that we defined $a^{(1)}=x$ (the input).
- The forward propagation can therefore be written as:

$$
\begin{aligned}
& z^{(l+1)}=W^{(l)} a^{(l)}+b^{(l)} \\
& a^{(l+1)}=f\left(z^{(l+1)}\right) .
\end{aligned}
$$

Using matrix-vector operations, we can take advantage of fast linear algebra routines to quickly perform calculations in our network.

- Can use different architectures (i.e., pattens of connectivity between neurons).
- Typically, we use multiple densely connected layers.

The previous process is called the forward propagation step.

- Recall that we defined $a^{(1)}=x$ (the input).
- The forward propagation can therefore be written as:

$$
\begin{aligned}
& z^{(l+1)}=W^{(l)} a^{(l)}+b^{(l)} \\
& a^{(l+1)}=f\left(z^{(l+1)}\right) .
\end{aligned}
$$

Using matrix-vector operations, we can take advantage of fast linear algebra routines to quickly perform calculations in our network.

- Can use different architectures (i.e., pattens of connectivity between neurons).
- Typically, we use multiple densely connected layers.
- In that case, we obtain a feedforward neural network (no directed loops or cycles).

Multiple outputs

Neural networks may also have multiple outputs:

Source: UFLDL tutorial

Multiple outputs

Neural networks may also have multiple outputs:

- To train this network, we need observations $\left(x^{(i)}, y^{(i)}\right)$ with $y^{(i)} \in \mathbb{R}^{2}$.

Multiple outputs

Neural networks may also have multiple outputs:

Source: UFLDL tutorial

- To train this network, we need observations $\left(x^{(i)}, y^{(i)}\right)$ with $y^{(i)} \in \mathbb{R}^{2}$.
- Useful for applications where the output is multivariate (e.g. medical diagnosis application where output is whether or not a patient has a list of diseases).

Multiple outputs

Neural networks may also have multiple outputs:

Source: UFLDL tutorial

- To train this network, we need observations $\left(x^{(i)}, y^{(i)}\right)$ with $y^{(i)} \in \mathbb{R}^{2}$.
- Useful for applications where the output is multivariate (e.g. medical diagnosis application where output is whether or not a patient has a list of diseases).
- Useful to encode or compress information.

