
MATH 637: Mathematical Techniques in Data
Science

Neural networks I

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 22, 2020

This lecture is based on the UFLDL tutorial (http://deeplearning.stanford.edu/tutorial/)



Reference

https://www.deeplearningbook.org/

2/12



Neurons

Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.

Each neuron receives signals from other neurons via its many
dendrites (input).
Each neuron has a single axon (output).
Neuron make on average 7,000 synaptic connections.
Signals are sent via an electrochemical process.
When a neuron fires, it starts a chain reaction that propagates
information.
There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.

3/12



Neurons

Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.
Each neuron receives signals from other neurons via its many
dendrites (input).

Each neuron has a single axon (output).
Neuron make on average 7,000 synaptic connections.
Signals are sent via an electrochemical process.
When a neuron fires, it starts a chain reaction that propagates
information.
There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.

3/12



Neurons

Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.
Each neuron receives signals from other neurons via its many
dendrites (input).
Each neuron has a single axon (output).

Neuron make on average 7,000 synaptic connections.
Signals are sent via an electrochemical process.
When a neuron fires, it starts a chain reaction that propagates
information.
There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.

3/12



Neurons

Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.
Each neuron receives signals from other neurons via its many
dendrites (input).
Each neuron has a single axon (output).
Neuron make on average 7,000 synaptic connections.

Signals are sent via an electrochemical process.
When a neuron fires, it starts a chain reaction that propagates
information.
There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.

3/12



Neurons

Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.
Each neuron receives signals from other neurons via its many
dendrites (input).
Each neuron has a single axon (output).
Neuron make on average 7,000 synaptic connections.
Signals are sent via an electrochemical process.

When a neuron fires, it starts a chain reaction that propagates
information.
There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.

3/12



Neurons

Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.
Each neuron receives signals from other neurons via its many
dendrites (input).
Each neuron has a single axon (output).
Neuron make on average 7,000 synaptic connections.
Signals are sent via an electrochemical process.
When a neuron fires, it starts a chain reaction that propagates
information.

There are excitatory and inhibitory synapses.
See Izenman (2013) for more details.

3/12



Neurons

Neuron representation (Source: Wiki).

Our brain contains about 86 billion neurons.
Each neuron receives signals from other neurons via its many
dendrites (input).
Each neuron has a single axon (output).
Neuron make on average 7,000 synaptic connections.
Signals are sent via an electrochemical process.
When a neuron fires, it starts a chain reaction that propagates
information.
There are excitatory and inhibitory synapses.

See Izenman (2013) for more details.
3/12



Neurons (cont.)

Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.

As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?
Neural network models are inspired by neuroscience.
Use multiple layers of neurons to represent data.
Very popular in computer vision, natural language processing,
and many other fields.
Today, neural network models are often called deep learning.

4/12



Neurons (cont.)

Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.
As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?
Neural network models are inspired by neuroscience.
Use multiple layers of neurons to represent data.
Very popular in computer vision, natural language processing,
and many other fields.
Today, neural network models are often called deep learning.

4/12



Neurons (cont.)

Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.
As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?

Neural network models are inspired by neuroscience.
Use multiple layers of neurons to represent data.
Very popular in computer vision, natural language processing,
and many other fields.
Today, neural network models are often called deep learning.

4/12



Neurons (cont.)

Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.
As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?
Neural network models are inspired by neuroscience.

Use multiple layers of neurons to represent data.
Very popular in computer vision, natural language processing,
and many other fields.
Today, neural network models are often called deep learning.

4/12



Neurons (cont.)

Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.
As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?
Neural network models are inspired by neuroscience.
Use multiple layers of neurons to represent data.

Very popular in computer vision, natural language processing,
and many other fields.
Today, neural network models are often called deep learning.

4/12



Neurons (cont.)

Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.
As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?
Neural network models are inspired by neuroscience.
Use multiple layers of neurons to represent data.
Very popular in computer vision, natural language processing,
and many other fields.

Today, neural network models are often called deep learning.

4/12



Neurons (cont.)

Our brain learns by changing the strengths of the connections
between neurons or by adding or removing such connections.
As of today, relating brain networks to functions is still a very
challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?
Neural network models are inspired by neuroscience.
Use multiple layers of neurons to represent data.
Very popular in computer vision, natural language processing,
and many other fields.
Today, neural network models are often called deep learning.

4/12



Neural networks

Single neuron model:

Source: UFLDL Tutorial

Input: x1, x2, x3 (and +1 intercept).
Output: hW,b(x) = f(W Tx) = f(W1x1 +W2x2 +W3x3 + b),
where f is the rectified linear unit (ReLU) function:

f(x) = max(0, x).

Other common choice for f are the sigmoid and the hyperbolic
tangent:

f(x) =
1

1 + e−x
f(x) = tanh(x) =

ex − e−x

ex + e−x
.

5/12



Neural networks

Single neuron model:

Source: UFLDL Tutorial

Input: x1, x2, x3 (and +1 intercept).

Output: hW,b(x) = f(W Tx) = f(W1x1 +W2x2 +W3x3 + b),
where f is the rectified linear unit (ReLU) function:

f(x) = max(0, x).

Other common choice for f are the sigmoid and the hyperbolic
tangent:

f(x) =
1

1 + e−x
f(x) = tanh(x) =

ex − e−x

ex + e−x
.

5/12



Neural networks

Single neuron model:

Source: UFLDL Tutorial

Input: x1, x2, x3 (and +1 intercept).
Output: hW,b(x) = f(W Tx) = f(W1x1 +W2x2 +W3x3 + b),
where f is the rectified linear unit (ReLU) function:

f(x) = max(0, x).

Other common choice for f are the sigmoid and the hyperbolic
tangent:

f(x) =
1

1 + e−x
f(x) = tanh(x) =

ex − e−x

ex + e−x
.

5/12



Neural networks

Single neuron model:

Source: UFLDL Tutorial

Input: x1, x2, x3 (and +1 intercept).
Output: hW,b(x) = f(W Tx) = f(W1x1 +W2x2 +W3x3 + b),
where f is the rectified linear unit (ReLU) function:

f(x) = max(0, x).

Other common choice for f are the sigmoid and the hyperbolic
tangent:

f(x) =
1

1 + e−x
f(x) = tanh(x) =

ex − e−x

ex + e−x
.

5/12



Neural networks (cont.)

The function f acts as an activation function.

Idea: Depending on the input of the neuron and the strength of the
links, the neuron “fires” or not.

6/12



Neural network models

A neural networks model is obtained by hooking together many
neurons so that the output of one neuron becomes the input of
another neuron.

Source: UFLDL tutorial

Note: Each layer includes an intercept “+1” (or bias unit)
Leftmost layer = input layer.
Rightmost layer = output layer.
Middle layers = hidden layers (not observed).

We will let nl denote the number of layers in our model (nl = 3
in the above example).

7/12



Neural network models

A neural networks model is obtained by hooking together many
neurons so that the output of one neuron becomes the input of
another neuron.

Source: UFLDL tutorial

Note: Each layer includes an intercept “+1” (or bias unit)

Leftmost layer = input layer.
Rightmost layer = output layer.
Middle layers = hidden layers (not observed).

We will let nl denote the number of layers in our model (nl = 3
in the above example).

7/12



Neural network models

A neural networks model is obtained by hooking together many
neurons so that the output of one neuron becomes the input of
another neuron.

Source: UFLDL tutorial

Note: Each layer includes an intercept “+1” (or bias unit)
Leftmost layer = input layer.
Rightmost layer = output layer.
Middle layers = hidden layers (not observed).

We will let nl denote the number of layers in our model (nl = 3
in the above example).

7/12



Neural network models

A neural networks model is obtained by hooking together many
neurons so that the output of one neuron becomes the input of
another neuron.

Source: UFLDL tutorial

Note: Each layer includes an intercept “+1” (or bias unit)
Leftmost layer = input layer.
Rightmost layer = output layer.
Middle layers = hidden layers (not observed).

We will let nl denote the number of layers in our model (nl = 3
in the above example). 7/12



Notation

nl = number of layers.

We denote the layers by L1, . . . , Lnl
, so L1 = input layer and

Lnl
= output layer.

W
(l)
ij = weight associated with the connection between unit j

in layer l, and unit i in layer l + 1. (Note the order of the
indices.)

b
(l)
i is the bias associated with unit i in layer l + 1.

In above example: (W, b) = (W (1), b(1),W (2), b(2)). Here
W (1) ∈ R3×3, W (2) ∈ R1×3, b(1) ∈ R3, b(2) ∈ R.

8/12



Notation

nl = number of layers.
We denote the layers by L1, . . . , Lnl

, so L1 = input layer and
Lnl

= output layer.

W
(l)
ij = weight associated with the connection between unit j

in layer l, and unit i in layer l + 1. (Note the order of the
indices.)

b
(l)
i is the bias associated with unit i in layer l + 1.

In above example: (W, b) = (W (1), b(1),W (2), b(2)). Here
W (1) ∈ R3×3, W (2) ∈ R1×3, b(1) ∈ R3, b(2) ∈ R.

8/12



Notation

nl = number of layers.
We denote the layers by L1, . . . , Lnl

, so L1 = input layer and
Lnl

= output layer.

W
(l)
ij = weight associated with the connection between unit j

in layer l, and unit i in layer l + 1. (Note the order of the
indices.)

b
(l)
i is the bias associated with unit i in layer l + 1.

In above example: (W, b) = (W (1), b(1),W (2), b(2)). Here
W (1) ∈ R3×3, W (2) ∈ R1×3, b(1) ∈ R3, b(2) ∈ R.

8/12



Notation

nl = number of layers.
We denote the layers by L1, . . . , Lnl

, so L1 = input layer and
Lnl

= output layer.

W
(l)
ij = weight associated with the connection between unit j

in layer l, and unit i in layer l + 1. (Note the order of the
indices.)

b
(l)
i is the bias associated with unit i in layer l + 1.

In above example: (W, b) = (W (1), b(1),W (2), b(2)). Here
W (1) ∈ R3×3, W (2) ∈ R1×3, b(1) ∈ R3, b(2) ∈ R.

8/12



Notation

nl = number of layers.
We denote the layers by L1, . . . , Lnl

, so L1 = input layer and
Lnl

= output layer.

W
(l)
ij = weight associated with the connection between unit j

in layer l, and unit i in layer l + 1. (Note the order of the
indices.)

b
(l)
i is the bias associated with unit i in layer l + 1.

In above example: (W, b) = (W (1), b(1),W (2), b(2)). Here
W (1) ∈ R3×3, W (2) ∈ R1×3, b(1) ∈ R3, b(2) ∈ R.

8/12



Activation

We denote by a
(l)
i the activation of unit i in layer l.

We let a(1)i = xi (input).

We have:

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 )

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2 )

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3 )

hW,b = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1 ).

9/12



Activation

We denote by a
(l)
i the activation of unit i in layer l.

We let a(1)i = xi (input).
We have:

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 )

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2 )

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3 )

hW,b = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1 ).

9/12



Compact notation

In what follows, we will let z(l)i = total weighted sum of inputs to
unit i in layer l (including the bias term):

z
(l)
i :=

∑
j

W
(l−1)
ij a

(l−1)
j + b

(l−1)
i (l ≥ 2).

Note that that a(l)i = f(z
(l)
i ).

For example:

z
(2)
i =

3∑
j=1

W
(1)
ij xj + b

(1)
i i = 1, 2, 3.

We extend f elementwise: f([v1, v2, v3]) = [f(v1), f(v2), f(v3)].
Using the above notation, we have:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

hW,b = a(3) = f(z(3)).

10/12



Compact notation

In what follows, we will let z(l)i = total weighted sum of inputs to
unit i in layer l (including the bias term):

z
(l)
i :=

∑
j

W
(l−1)
ij a

(l−1)
j + b

(l−1)
i (l ≥ 2).

Note that that a(l)i = f(z
(l)
i ).

For example:

z
(2)
i =

3∑
j=1

W
(1)
ij xj + b

(1)
i i = 1, 2, 3.

We extend f elementwise: f([v1, v2, v3]) = [f(v1), f(v2), f(v3)].
Using the above notation, we have:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

hW,b = a(3) = f(z(3)).

10/12



Compact notation

In what follows, we will let z(l)i = total weighted sum of inputs to
unit i in layer l (including the bias term):

z
(l)
i :=

∑
j

W
(l−1)
ij a

(l−1)
j + b

(l−1)
i (l ≥ 2).

Note that that a(l)i = f(z
(l)
i ).

For example:

z
(2)
i =

3∑
j=1

W
(1)
ij xj + b

(1)
i i = 1, 2, 3.

We extend f elementwise: f([v1, v2, v3]) = [f(v1), f(v2), f(v3)].
Using the above notation, we have:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

hW,b = a(3) = f(z(3)).

10/12



Compact notation

In what follows, we will let z(l)i = total weighted sum of inputs to
unit i in layer l (including the bias term):

z
(l)
i :=

∑
j

W
(l−1)
ij a

(l−1)
j + b

(l−1)
i (l ≥ 2).

Note that that a(l)i = f(z
(l)
i ).

For example:

z
(2)
i =

3∑
j=1

W
(1)
ij xj + b

(1)
i i = 1, 2, 3.

We extend f elementwise: f([v1, v2, v3]) = [f(v1), f(v2), f(v3)].

Using the above notation, we have:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

hW,b = a(3) = f(z(3)).

10/12



Compact notation

In what follows, we will let z(l)i = total weighted sum of inputs to
unit i in layer l (including the bias term):

z
(l)
i :=

∑
j

W
(l−1)
ij a

(l−1)
j + b

(l−1)
i (l ≥ 2).

Note that that a(l)i = f(z
(l)
i ).

For example:

z
(2)
i =

3∑
j=1

W
(1)
ij xj + b

(1)
i i = 1, 2, 3.

We extend f elementwise: f([v1, v2, v3]) = [f(v1), f(v2), f(v3)].
Using the above notation, we have:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

hW,b = a(3) = f(z(3)).

10/12



Forward propagation

The previous process is called the forward propagation step.

Recall that we defined a(1) = x (the input).
The forward propagation can therefore be written as:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

Can use different architectures (i.e., pattens of connectivity
between neurons).
Typically, we use multiple densely connected layers.
In that case, we obtain a feedforward neural network (no
directed loops or cycles).

11/12



Forward propagation

The previous process is called the forward propagation step.
Recall that we defined a(1) = x (the input).

The forward propagation can therefore be written as:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

Can use different architectures (i.e., pattens of connectivity
between neurons).
Typically, we use multiple densely connected layers.
In that case, we obtain a feedforward neural network (no
directed loops or cycles).

11/12



Forward propagation

The previous process is called the forward propagation step.
Recall that we defined a(1) = x (the input).
The forward propagation can therefore be written as:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

Can use different architectures (i.e., pattens of connectivity
between neurons).
Typically, we use multiple densely connected layers.
In that case, we obtain a feedforward neural network (no
directed loops or cycles).

11/12



Forward propagation

The previous process is called the forward propagation step.
Recall that we defined a(1) = x (the input).
The forward propagation can therefore be written as:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

Can use different architectures (i.e., pattens of connectivity
between neurons).
Typically, we use multiple densely connected layers.
In that case, we obtain a feedforward neural network (no
directed loops or cycles).

11/12



Forward propagation

The previous process is called the forward propagation step.
Recall that we defined a(1) = x (the input).
The forward propagation can therefore be written as:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

Can use different architectures (i.e., pattens of connectivity
between neurons).

Typically, we use multiple densely connected layers.
In that case, we obtain a feedforward neural network (no
directed loops or cycles).

11/12



Forward propagation

The previous process is called the forward propagation step.
Recall that we defined a(1) = x (the input).
The forward propagation can therefore be written as:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

Can use different architectures (i.e., pattens of connectivity
between neurons).
Typically, we use multiple densely connected layers.

In that case, we obtain a feedforward neural network (no
directed loops or cycles).

11/12



Forward propagation

The previous process is called the forward propagation step.
Recall that we defined a(1) = x (the input).
The forward propagation can therefore be written as:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)).

Using matrix-vector operations, we can take advantage of fast linear
algebra routines to quickly perform calculations in our network.

Can use different architectures (i.e., pattens of connectivity
between neurons).
Typically, we use multiple densely connected layers.
In that case, we obtain a feedforward neural network (no
directed loops or cycles).

11/12



Multiple outputs

Neural networks may also have multiple outputs:

Source: UFLDL tutorial

To train this network, we need observations (x(i), y(i)) with
y(i) ∈ R2.
Useful for applications where the output is multivariate
(e.g. medical diagnosis application where output is whether or
not a patient has a list of diseases).
Useful to encode or compress information.

12/12



Multiple outputs

Neural networks may also have multiple outputs:

Source: UFLDL tutorial

To train this network, we need observations (x(i), y(i)) with
y(i) ∈ R2.

Useful for applications where the output is multivariate
(e.g. medical diagnosis application where output is whether or
not a patient has a list of diseases).
Useful to encode or compress information.

12/12



Multiple outputs

Neural networks may also have multiple outputs:

Source: UFLDL tutorial

To train this network, we need observations (x(i), y(i)) with
y(i) ∈ R2.
Useful for applications where the output is multivariate
(e.g. medical diagnosis application where output is whether or
not a patient has a list of diseases).

Useful to encode or compress information.

12/12



Multiple outputs

Neural networks may also have multiple outputs:

Source: UFLDL tutorial

To train this network, we need observations (x(i), y(i)) with
y(i) ∈ R2.
Useful for applications where the output is multivariate
(e.g. medical diagnosis application where output is whether or
not a patient has a list of diseases).
Useful to encode or compress information.

12/12


