MATH 637: Mathematical Techniques in Data Science Neural networks II

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 24, 2020

We have:

$$
\begin{aligned}
a_{1}^{(2)} & =f\left(W_{11}^{(1)} x_{1}+W_{12}^{(1)} x_{2}+W_{13}^{(1)} x_{3}+b_{1}^{(1)}\right) \\
a_{2}^{(2)} & =f\left(W_{21}^{(1)} x_{1}+W_{22}^{(1)} x_{2}+W_{23}^{(1)} x_{3}+b_{2}^{(1)}\right) \\
a_{3}^{(2)} & =f\left(W_{31}^{(1)} x_{1}+W_{32}^{(1)} x_{2}+W_{33}^{(1)} x_{3}+b_{3}^{(1)}\right) \\
h_{W, b} & =a_{1}^{(3)}=f\left(W_{11}^{(2)} a_{1}^{(2)}+W_{12}^{(2)} a_{2}^{(2)}+W_{13}^{(2)} a_{3}^{(2)}+b_{1}^{(2)}\right) .
\end{aligned}
$$

Recall (cont.)

Vector form:

$$
\begin{aligned}
z^{(2)} & =W^{(1)} x+b^{(1)} \\
a^{(2)} & =f\left(z^{(2)}\right) \\
z^{(3)} & =W^{(2)} a^{(2)}+b^{(2)} \\
h_{W, b} & =a^{(3)}=f\left(z^{(3)}\right)
\end{aligned}
$$

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$. We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$. We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).
Note:

- The Ridge penalty prevents overfitting.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).
Note:

- The Ridge penalty prevents overfitting.
- We do not penalize the bias terms $b_{i}^{(l)}$.

Training neural networks

Suppose we have

- A neural network with s_{l} neurons in layer $l\left(l=1, \ldots, n_{l}\right)$.
- Observations $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{R}^{s_{n_{l}}}$.

We would like to choose $W^{(l)}$ and $b^{(l)}$ in some optimal way for all l.

Let
$J(W, b ; x, y):=\frac{1}{2}\left\|h_{W, b}(x)-y\right\|_{2}^{2} \quad$ (Squared error for one sample).
Define

$$
J(W, b):=\frac{1}{m} \sum_{i=1}^{m} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\frac{\lambda}{2} \sum_{l=1}^{n_{l}-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}}\left(W_{j i}^{(l)}\right)^{2} .
$$

(average squared error with Ridge penalty).
Note:

- The Ridge penalty prevents overfitting.
- We do not penalize the bias terms $b_{i}^{(l)}$.
- The loss function $J(W, b)$ is not convex.

Some remarks

- The loss function $J(W, b)$ can be used both for regression and classification.
- The loss function $J(W, b)$ can be used both for regression and classification.
- Cross-entropy is frequently used for classification: measuring distance between probability distribution

$$
\begin{array}{ll}
y_{i}=(1,0,0,0) & \text { True label } \\
\hat{y_{i}}=(0.63,0.12,0.07,0.18) & \text { Predicted label. }
\end{array}
$$

- The loss function $J(W, b)$ can be used both for regression and classification.
- Cross-entropy is frequently used for classification: measuring distance between probability distribution

$$
\begin{array}{ll}
y_{i}=(1,0,0,0) & \text { True label } \\
\hat{y_{i}}=(0.63,0.12,0.07,0.18) & \text { Predicted label }
\end{array}
$$

- Scale the output according to the activation function in the last layer (e.g. $y \in[0,1]$ if working with sigmoid).
- The loss function $J(W, b)$ can be used both for regression and classification.
- Cross-entropy is frequently used for classification: measuring distance between probability distribution

$$
\begin{array}{ll}
y_{i}=(1,0,0,0) & \text { True label } \\
\hat{y_{i}}=(0.63,0.12,0.07,0.18) & \text { Predicted label. }
\end{array}
$$

- Scale the output according to the activation function in the last layer (e.g. $y \in[0,1]$ if working with sigmoid).
- The loss function is generally non-convex, we may only find a local minimum.
- The loss function $J(W, b)$ can be used both for regression and classification.
- Cross-entropy is frequently used for classification: measuring distance between probability distribution

$$
\begin{array}{ll}
y_{i}=(1,0,0,0) & \text { True label } \\
\hat{y}_{i}=(0.63,0.12,0.07,0.18) & \text { Predicted label. }
\end{array}
$$

- Scale the output according to the activation function in the last layer (e.g. $y \in[0,1]$ if working with sigmoid).
- The loss function is generally non-convex, we may only find a local minimum.
- We need an initial choice for $W_{i j}^{(l)}$ and $b_{i}^{(l)}$. If we initialize all the parameters to 0 , then the parameters remain constant over the layers because of the symmetry of the problem.
- The loss function $J(W, b)$ can be used both for regression and classification.
- Cross-entropy is frequently used for classification: measuring distance between probability distribution

$$
\begin{array}{ll}
y_{i}=(1,0,0,0) & \text { True label } \\
\hat{y}_{i}=(0.63,0.12,0.07,0.18) & \text { Predicted label }
\end{array}
$$

- Scale the output according to the activation function in the last layer (e.g. $y \in[0,1]$ if working with sigmoid).
- The loss function is generally non-convex, we may only find a local minimum.
- We need an initial choice for $W_{i j}^{(l)}$ and $b_{i}^{(l)}$. If we initialize all the parameters to 0 , then the parameters remain constant over the layers because of the symmetry of the problem.
- As a result, we usually initialize the parameters to a small constant at random (say, using $N\left(0, \epsilon^{2}\right)$ for $\epsilon=0.01$).

Gradient descent and the backpropagation algorithm

- We update the parameters using a gradient descent as follows:

$$
\begin{aligned}
W_{i j}^{(l)} & \leftarrow W_{i j}^{(l)}-\alpha \frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) \\
b_{i}^{(l)} & \leftarrow b_{i}^{(l)}-\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b) .
\end{aligned}
$$

- Here $\alpha>0$ is a parameter (the learning rate).

Gradient descent and the backpropagation algorithm

- We update the parameters using a gradient descent as follows:

$$
\begin{aligned}
W_{i j}^{(l)} & \leftarrow W_{i j}^{(l)}-\alpha \frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) \\
b_{i}^{(l)} & \leftarrow b_{i}^{(l)}-\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b)
\end{aligned}
$$

- Here $\alpha>0$ is a parameter (the learning rate).
- Observe that:

$$
\begin{aligned}
\frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{i j}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\lambda W_{i j}^{(l)} \\
\frac{\partial}{\partial b_{i}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_{i}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right) .
\end{aligned}
$$

Gradient descent and the backpropagation algorithm

- We update the parameters using a gradient descent as follows:

$$
\begin{aligned}
W_{i j}^{(l)} & \leftarrow W_{i j}^{(l)}-\alpha \frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) \\
b_{i}^{(l)} & \leftarrow b_{i}^{(l)}-\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b)
\end{aligned}
$$

- Here $\alpha>0$ is a parameter (the learning rate).
- Observe that:

$$
\begin{aligned}
\frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{i j}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\lambda W_{i j}^{(l)} \\
\frac{\partial}{\partial b_{i}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_{i}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)
\end{aligned}
$$

- Therefore, it suffices to compute the derivatives of $J\left(W, b ; x^{(i)}, y^{(i)}\right)$.

Gradient descent and the backpropagation algorithm

- We update the parameters using a gradient descent as follows:

$$
\begin{aligned}
W_{i j}^{(l)} & \leftarrow W_{i j}^{(l)}-\alpha \frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) \\
b_{i}^{(l)} & \leftarrow b_{i}^{(l)}-\alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W, b)
\end{aligned}
$$

- Here $\alpha>0$ is a parameter (the learning rate).
- Observe that:

$$
\begin{aligned}
\frac{\partial}{\partial W_{i j}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial W_{i j}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right)+\lambda W_{i j}^{(l)} \\
\frac{\partial}{\partial b_{i}^{(l)}} J(W, b) & =\frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial b_{i}^{(l)}} J\left(W, b ; x^{(i)}, y^{(i)}\right) .
\end{aligned}
$$

- Therefore, it suffices to compute the derivatives of $J\left(W, b ; x^{(i)}, y^{(i)}\right)$.
- The derivatives can be recursively computed using the chain rule (the backpropagation algorithm, or backprop). See Goodfellow et al. Section 6.5.

Stochastic gradient descent and minibatches

- The error to minimize has the form

$$
J(\theta)=\frac{1}{n} \sum_{i=1}^{n} L\left(x^{(i)}, y^{(i)}, \theta\right)
$$

for some loss function L and some vector of parameters θ ($n=$ sample size).

Stochastic gradient descent and minibatches

- The error to minimize has the form

$$
J(\theta)=\frac{1}{n} \sum_{i=1}^{n} L\left(x^{(i)}, y^{(i)}, \theta\right)
$$

for some loss function L and some vector of parameters θ ($n=$ sample size).

- Hence

$$
\nabla_{\theta} J(\theta)=\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L\left(x^{(i)}, y^{(i)}, \theta\right)
$$

- The error to minimize has the form

$$
J(\theta)=\frac{1}{n} \sum_{i=1}^{n} L\left(x^{(i)}, y^{(i)}, \theta\right)
$$

for some loss function L and some vector of parameters θ ($n=$ sample size).

- Hence

$$
\nabla_{\theta} J(\theta)=\frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L\left(x^{(i)}, y^{(i)}, \theta\right)
$$

- Thinking of $\nabla_{\theta} J(\theta)$ as an expected value:

$$
\nabla_{\theta} J(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(x^{\left(t_{i}\right)}, y^{\left(t_{i}\right)}, \theta\right)
$$

for a subset of samples $\left(x^{\left(t_{1}\right)}, y^{\left(t_{1}\right)}\right), \ldots,\left(x^{\left(t_{m}\right)}, y^{\left(t_{m}\right)}\right)$ and $1 \leq m<n$.

Stochastic gradient descent and minibatches (cont.)

- Instead of computing the full gradient at every update, one can approximate it using random subset of samples of size $1 \leq m<n$.
- Instead of computing the full gradient at every update, one can approximate it using random subset of samples of size $1 \leq m<n$.
- Typical approach: Divide the dataset into minibatches of a given size.
(1) Pick a minibatch.
(2) Approximate the gradient using that minibatch.
(3) Update the parameters of the model.
(9) Repeat Steps 1 to 3 until the whole dataset has been exhausted.
- Instead of computing the full gradient at every update, one can approximate it using random subset of samples of size $1 \leq m<n$.
- Typical approach: Divide the dataset into minibatches of a given size.
(1) Pick a minibatch.
(2) Approximate the gradient using that minibatch.
(3) Update the parameters of the model.
(9) Repeat Steps 1 to 3 until the whole dataset has been exhausted.
- A complete pass through the dataset is called an epoch.
- Instead of computing the full gradient at every update, one can approximate it using random subset of samples of size $1 \leq m<n$.
- Typical approach: Divide the dataset into minibatches of a given size.
(1) Pick a minibatch.
(2) Approximate the gradient using that minibatch.
(3) Update the parameters of the model.
(9) Repeat Steps 1 to 3 until the whole dataset has been exhausted.
- A complete pass through the dataset is called an epoch.
- The optimization process is often stopped after a given number of epochs.

Autoencoders

An autoencoder learns the identity function:

- Input: unlabeled data.
- Output = input.
- Idea: limit the number of hidden layers to discover structure in the data.
- Learn a compressed representation of the input.

Layer L_{1}
Source: UFLDL tutorial.
Can also learn a sparse network by including supplementary constraints on the weights.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right) .
$$

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Problem: Find x that maximally activates $a_{i}^{(2)}$ over $\|x\|_{2} \leq 1$.

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Problem: Find x that maximally activates $a_{i}^{(2)}$ over $\|x\|_{2} \leq 1$. Claim:

$$
x_{j}=\frac{W_{i j}^{(1)}}{\sqrt{\sum_{j=1}^{100}\left(W_{i j}^{(1)}\right)^{2}}} .
$$

Example (UFLDL)

- Train an autoencoder on 10×10 images with one hidden layer.
- Each hidden unit i computes:

$$
a_{i}^{(2)}=f\left(\sum_{j=1}^{100} W_{i j}^{(1)} x_{j}+b_{j}^{(1)}\right)
$$

- Think of $a_{i}^{(2)}$ as some non-linear feature of the input x.

Problem: Find x that maximally activates $a_{i}^{(2)}$ over $\|x\|_{2} \leq 1$.
Claim:

$$
x_{j}=\frac{W_{i j}^{(1)}}{\sqrt{\sum_{j=1}^{100}\left(W_{i j}^{(1)}\right)^{2}}} .
$$

(Hint: Use Cauchy-Schwarz).
We can now display the image maximizing $a_{i}^{(2)}$ for each i.

Example (cont.)

100 hidden units on 10×10 pixel inputs:

The different hidden units have learned to detect edges at different positions and orientations in the image.

Sparse neural networks

- So far we discussed dense neural networks.

Sparse neural networks

- So far we discussed dense neural networks.
- Dense networks have a lot of parameters to learn. Can be inefficient or impossible to train.

Sparse neural networks

- So far we discussed dense neural networks.
- Dense networks have a lot of parameters to learn. Can be inefficient or impossible to train.
- Sparse models have been proposed in the literature.

Sparse neural networks

- So far we discussed dense neural networks.
- Dense networks have a lot of parameters to learn. Can be inefficient or impossible to train.
- Sparse models have been proposed in the literature.
- Some of these models find inspiration from how the early visual system is wired up in biology.
layer $m+1$
layer m
layer m-I

Sparse neural networks

- So far we discussed dense neural networks.
- Dense networks have a lot of parameters to learn. Can be inefficient or impossible to train.
- Sparse models have been proposed in the literature.
- Some of these models find inspiration from how the early visual system is wired up in biology.
layer $m+1$
layer m
layer m-I

- Dropouts: During training, randomly ignore or ("drop out") some neurons.
- Can specify a dropout rate (i.e., a fixed probability $0 \leq p \leq 1$ of ignoring a given node).
- Used to learn sparse models and prevent overfitting.

(a) Standard Neural Net

(b) After applying dropout.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.
- Can "convolve" the learned features with the larger image.

Using convolutions

- Idea: Certain signals are stationary, i.e., their statistical properties do not change in space or time.
- For example, images often have similar statistical properties in different regions in space.
- That suggests that the features that we learn at one part of an image can also be applied to other parts of the image.
- Can "convolve" the learned features with the larger image.

$$
C(x, y)=\sum_{m} \sum_{n} I(x+m, y+m) K(m, n)
$$

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Sharpen

$$
\text { * }\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right]=
$$

- Once can also pool the features obtained via convolution (max, mean, etc.).
- Can lead to more robust features. Can lead to invariant features.
- For example, if the pooling regions are contiguous, then the pooling units will be "translation invariant", i.e., they won't change much if objects in the image are undergo a (small) translation.

Example: handwritten digits

Neural networks with keras (TensorFlow)

Homework.
Please go through (and run on your own) the tutorial available at: https://www.tensorflow.org/tutorials/keras/classification

- If using Anaconda: conda install tensorflow.
- Can also use Google Colab:
https://colab.research.google.com/

