
MATH 637: Mathematical Techniques in Data
Science

Neural networks II

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 24, 2020

This lecture is based on the UFLDL tutorial (http://deeplearning.stanford.edu/tutorial/)



Recall

We have:

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 )

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2 )

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3 )

hW,b = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1 ).

2/19



Recall (cont.)

Vector form:

z(2) =W (1)x+ b(1)

a(2) = f(z(2))

z(3) =W (2)a(2) + b(2)

hW,b = a(3) = f(z(3)).

3/19



Training neural networks

Suppose we have
A neural network with sl neurons in layer l (l = 1, . . . , nl).

Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .
We would like to choose W (l) and b(l) in some optimal way for all
l.
Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

Define

J(W, b) :=
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2.

(average squared error with Ridge penalty).
Note:

The Ridge penalty prevents overfitting.
We do not penalize the bias terms b(l)i .
The loss function J(W, b) is not convex.

4/19



Training neural networks

Suppose we have
A neural network with sl neurons in layer l (l = 1, . . . , nl).
Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .

We would like to choose W (l) and b(l) in some optimal way for all
l.

Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

Define

J(W, b) :=
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2.

(average squared error with Ridge penalty).
Note:

The Ridge penalty prevents overfitting.
We do not penalize the bias terms b(l)i .
The loss function J(W, b) is not convex.

4/19



Training neural networks

Suppose we have
A neural network with sl neurons in layer l (l = 1, . . . , nl).
Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .

We would like to choose W (l) and b(l) in some optimal way for all
l.
Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

Define

J(W, b) :=
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2.

(average squared error with Ridge penalty).
Note:

The Ridge penalty prevents overfitting.
We do not penalize the bias terms b(l)i .
The loss function J(W, b) is not convex.

4/19



Training neural networks

Suppose we have
A neural network with sl neurons in layer l (l = 1, . . . , nl).
Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .

We would like to choose W (l) and b(l) in some optimal way for all
l.
Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

Define

J(W, b) :=
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2.

(average squared error with Ridge penalty).

Note:
The Ridge penalty prevents overfitting.
We do not penalize the bias terms b(l)i .
The loss function J(W, b) is not convex.

4/19



Training neural networks

Suppose we have
A neural network with sl neurons in layer l (l = 1, . . . , nl).
Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .

We would like to choose W (l) and b(l) in some optimal way for all
l.
Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

Define

J(W, b) :=
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2.

(average squared error with Ridge penalty).
Note:

The Ridge penalty prevents overfitting.

We do not penalize the bias terms b(l)i .
The loss function J(W, b) is not convex.

4/19



Training neural networks

Suppose we have
A neural network with sl neurons in layer l (l = 1, . . . , nl).
Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .

We would like to choose W (l) and b(l) in some optimal way for all
l.
Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

Define

J(W, b) :=
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2.

(average squared error with Ridge penalty).
Note:

The Ridge penalty prevents overfitting.
We do not penalize the bias terms b(l)i .

The loss function J(W, b) is not convex.

4/19



Training neural networks

Suppose we have
A neural network with sl neurons in layer l (l = 1, . . . , nl).
Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .

We would like to choose W (l) and b(l) in some optimal way for all
l.
Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

Define

J(W, b) :=
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2.

(average squared error with Ridge penalty).
Note:

The Ridge penalty prevents overfitting.
We do not penalize the bias terms b(l)i .
The loss function J(W, b) is not convex.

4/19



Some remarks

The loss function J(W, b) can be used both for regression and
classification.

Cross-entropy is frequently used for classification: measuring
distance between probability distribution

yi = (1, 0, 0, 0) True label
ŷi = (0.63, 0.12, 0.07, 0.18) Predicted label.

Scale the output according to the activation function in the
last layer (e.g. y ∈ [0, 1] if working with sigmoid).
The loss function is generally non-convex, we may only find a
local minimum.
We need an initial choice for W (l)

ij and b(l)i . If we initialize all
the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.
As a result, we usually initialize the parameters to a small
constant at random (say, using N(0, ε2) for ε = 0.01).

5/19



Some remarks

The loss function J(W, b) can be used both for regression and
classification.
Cross-entropy is frequently used for classification: measuring
distance between probability distribution

yi = (1, 0, 0, 0) True label
ŷi = (0.63, 0.12, 0.07, 0.18) Predicted label.

Scale the output according to the activation function in the
last layer (e.g. y ∈ [0, 1] if working with sigmoid).
The loss function is generally non-convex, we may only find a
local minimum.
We need an initial choice for W (l)

ij and b(l)i . If we initialize all
the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.
As a result, we usually initialize the parameters to a small
constant at random (say, using N(0, ε2) for ε = 0.01).

5/19



Some remarks

The loss function J(W, b) can be used both for regression and
classification.
Cross-entropy is frequently used for classification: measuring
distance between probability distribution

yi = (1, 0, 0, 0) True label
ŷi = (0.63, 0.12, 0.07, 0.18) Predicted label.

Scale the output according to the activation function in the
last layer (e.g. y ∈ [0, 1] if working with sigmoid).

The loss function is generally non-convex, we may only find a
local minimum.
We need an initial choice for W (l)

ij and b(l)i . If we initialize all
the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.
As a result, we usually initialize the parameters to a small
constant at random (say, using N(0, ε2) for ε = 0.01).

5/19



Some remarks

The loss function J(W, b) can be used both for regression and
classification.
Cross-entropy is frequently used for classification: measuring
distance between probability distribution

yi = (1, 0, 0, 0) True label
ŷi = (0.63, 0.12, 0.07, 0.18) Predicted label.

Scale the output according to the activation function in the
last layer (e.g. y ∈ [0, 1] if working with sigmoid).
The loss function is generally non-convex, we may only find a
local minimum.

We need an initial choice for W (l)
ij and b(l)i . If we initialize all

the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.
As a result, we usually initialize the parameters to a small
constant at random (say, using N(0, ε2) for ε = 0.01).

5/19



Some remarks

The loss function J(W, b) can be used both for regression and
classification.
Cross-entropy is frequently used for classification: measuring
distance between probability distribution

yi = (1, 0, 0, 0) True label
ŷi = (0.63, 0.12, 0.07, 0.18) Predicted label.

Scale the output according to the activation function in the
last layer (e.g. y ∈ [0, 1] if working with sigmoid).
The loss function is generally non-convex, we may only find a
local minimum.
We need an initial choice for W (l)

ij and b(l)i . If we initialize all
the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.

As a result, we usually initialize the parameters to a small
constant at random (say, using N(0, ε2) for ε = 0.01).

5/19



Some remarks

The loss function J(W, b) can be used both for regression and
classification.
Cross-entropy is frequently used for classification: measuring
distance between probability distribution

yi = (1, 0, 0, 0) True label
ŷi = (0.63, 0.12, 0.07, 0.18) Predicted label.

Scale the output according to the activation function in the
last layer (e.g. y ∈ [0, 1] if working with sigmoid).
The loss function is generally non-convex, we may only find a
local minimum.
We need an initial choice for W (l)

ij and b(l)i . If we initialize all
the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.
As a result, we usually initialize the parameters to a small
constant at random (say, using N(0, ε2) for ε = 0.01).

5/19



Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:

W
(l)
ij ←W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i ← b

(l)
i − α

∂

∂b
(l)
i

J(W, b).

Here α > 0 is a parameter (the learning rate).

Observe that:
∂

∂W
(l)
ij

J(W, b) =
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i)) + λW
(l)
ij

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)).

Therefore, it suffices to compute the derivatives of
J(W, b;x(i), y(i)).
The derivatives can be recursively computed using the chain rule

(the backpropagation algorithm, or backprop). See Goodfellow et
al. Section 6.5.

6/19



Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:

W
(l)
ij ←W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i ← b

(l)
i − α

∂

∂b
(l)
i

J(W, b).

Here α > 0 is a parameter (the learning rate).
Observe that:

∂

∂W
(l)
ij

J(W, b) =
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i)) + λW
(l)
ij

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)).

Therefore, it suffices to compute the derivatives of
J(W, b;x(i), y(i)).
The derivatives can be recursively computed using the chain rule

(the backpropagation algorithm, or backprop). See Goodfellow et
al. Section 6.5.

6/19



Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:

W
(l)
ij ←W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i ← b

(l)
i − α

∂

∂b
(l)
i

J(W, b).

Here α > 0 is a parameter (the learning rate).
Observe that:

∂

∂W
(l)
ij

J(W, b) =
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i)) + λW
(l)
ij

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)).

Therefore, it suffices to compute the derivatives of
J(W, b;x(i), y(i)).

The derivatives can be recursively computed using the chain rule
(the backpropagation algorithm, or backprop). See Goodfellow et
al. Section 6.5.

6/19



Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:

W
(l)
ij ←W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i ← b

(l)
i − α

∂

∂b
(l)
i

J(W, b).

Here α > 0 is a parameter (the learning rate).
Observe that:

∂

∂W
(l)
ij

J(W, b) =
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i)) + λW
(l)
ij

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)).

Therefore, it suffices to compute the derivatives of
J(W, b;x(i), y(i)).
The derivatives can be recursively computed using the chain rule

(the backpropagation algorithm, or backprop). See Goodfellow et
al. Section 6.5. 6/19



Stochastic gradient descent and minibatches

The error to minimize has the form

J(θ) =
1

n

n∑
i=1

L(x(i), y(i), θ)

for some loss function L and some vector of parameters θ
(n = sample size).

Hence
∇θJ(θ) =

1

n

n∑
i=1

∇θL(x(i), y(i), θ)

Thinking of ∇θJ(θ) as an expected value:

∇θJ(θ) ≈
1

m

m∑
i=1

∇θL(x(ti), y(ti), θ)

for a subset of samples (x(t1), y(t1)), . . . , (x(tm), y(tm)) and 1 ≤ m < n.

7/19



Stochastic gradient descent and minibatches

The error to minimize has the form

J(θ) =
1

n

n∑
i=1

L(x(i), y(i), θ)

for some loss function L and some vector of parameters θ
(n = sample size).

Hence
∇θJ(θ) =

1

n

n∑
i=1

∇θL(x(i), y(i), θ)

Thinking of ∇θJ(θ) as an expected value:

∇θJ(θ) ≈
1

m

m∑
i=1

∇θL(x(ti), y(ti), θ)

for a subset of samples (x(t1), y(t1)), . . . , (x(tm), y(tm)) and 1 ≤ m < n.

7/19



Stochastic gradient descent and minibatches

The error to minimize has the form

J(θ) =
1

n

n∑
i=1

L(x(i), y(i), θ)

for some loss function L and some vector of parameters θ
(n = sample size).

Hence
∇θJ(θ) =

1

n

n∑
i=1

∇θL(x(i), y(i), θ)

Thinking of ∇θJ(θ) as an expected value:

∇θJ(θ) ≈
1

m

m∑
i=1

∇θL(x(ti), y(ti), θ)

for a subset of samples (x(t1), y(t1)), . . . , (x(tm), y(tm)) and 1 ≤ m < n.
7/19



Stochastic gradient descent and minibatches (cont.)

Instead of computing the full gradient at every update, one can
approximate it using random subset of samples of size 1 ≤ m < n.

Typical approach: Divide the dataset into minibatches of a
given size.

1 Pick a minibatch.
2 Approximate the gradient using that minibatch.
3 Update the parameters of the model.
4 Repeat Steps 1 to 3 until the whole dataset has been

exhausted.

A complete pass through the dataset is called an epoch.

The optimization process is often stopped after a given number
of epochs.

8/19



Stochastic gradient descent and minibatches (cont.)

Instead of computing the full gradient at every update, one can
approximate it using random subset of samples of size 1 ≤ m < n.

Typical approach: Divide the dataset into minibatches of a
given size.

1 Pick a minibatch.
2 Approximate the gradient using that minibatch.
3 Update the parameters of the model.
4 Repeat Steps 1 to 3 until the whole dataset has been

exhausted.

A complete pass through the dataset is called an epoch.

The optimization process is often stopped after a given number
of epochs.

8/19



Stochastic gradient descent and minibatches (cont.)

Instead of computing the full gradient at every update, one can
approximate it using random subset of samples of size 1 ≤ m < n.

Typical approach: Divide the dataset into minibatches of a
given size.

1 Pick a minibatch.
2 Approximate the gradient using that minibatch.
3 Update the parameters of the model.
4 Repeat Steps 1 to 3 until the whole dataset has been

exhausted.

A complete pass through the dataset is called an epoch.

The optimization process is often stopped after a given number
of epochs.

8/19



Stochastic gradient descent and minibatches (cont.)

Instead of computing the full gradient at every update, one can
approximate it using random subset of samples of size 1 ≤ m < n.

Typical approach: Divide the dataset into minibatches of a
given size.

1 Pick a minibatch.
2 Approximate the gradient using that minibatch.
3 Update the parameters of the model.
4 Repeat Steps 1 to 3 until the whole dataset has been

exhausted.

A complete pass through the dataset is called an epoch.

The optimization process is often stopped after a given number
of epochs.

8/19



Autoencoders

An autoencoder learns the identity function:
Input: unlabeled data.
Output = input.
Idea: limit the number of hidden layers to discover structure in
the data.
Learn a compressed representation of the input.

Source: UFLDL tutorial.

Can also learn a sparse network by including supplementary
constraints on the weights. 9/19



Example (UFLDL)

Train an autoencoder on 10× 10 images with one hidden layer.

Each hidden unit i computes:

a
(2)
i = f

 100∑
j=1

W
(1)
ij xj + b

(1)
j

 .

Think of a(2)i as some non-linear feature of the input x.

Problem: Find x that maximally activates a(2)i over ‖x‖2 ≤ 1.
Claim:

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij )2

.

(Hint: Use Cauchy–Schwarz).

We can now display the image maximizing a(2)i for each i.

10/19



Example (UFLDL)

Train an autoencoder on 10× 10 images with one hidden layer.
Each hidden unit i computes:

a
(2)
i = f

 100∑
j=1

W
(1)
ij xj + b

(1)
j

 .

Think of a(2)i as some non-linear feature of the input x.

Problem: Find x that maximally activates a(2)i over ‖x‖2 ≤ 1.
Claim:

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij )2

.

(Hint: Use Cauchy–Schwarz).

We can now display the image maximizing a(2)i for each i.

10/19



Example (UFLDL)

Train an autoencoder on 10× 10 images with one hidden layer.
Each hidden unit i computes:

a
(2)
i = f

 100∑
j=1

W
(1)
ij xj + b

(1)
j

 .

Think of a(2)i as some non-linear feature of the input x.

Problem: Find x that maximally activates a(2)i over ‖x‖2 ≤ 1.
Claim:

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij )2

.

(Hint: Use Cauchy–Schwarz).

We can now display the image maximizing a(2)i for each i.

10/19



Example (UFLDL)

Train an autoencoder on 10× 10 images with one hidden layer.
Each hidden unit i computes:

a
(2)
i = f

 100∑
j=1

W
(1)
ij xj + b

(1)
j

 .

Think of a(2)i as some non-linear feature of the input x.

Problem: Find x that maximally activates a(2)i over ‖x‖2 ≤ 1.

Claim:

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij )2

.

(Hint: Use Cauchy–Schwarz).

We can now display the image maximizing a(2)i for each i.

10/19



Example (UFLDL)

Train an autoencoder on 10× 10 images with one hidden layer.
Each hidden unit i computes:

a
(2)
i = f

 100∑
j=1

W
(1)
ij xj + b

(1)
j

 .

Think of a(2)i as some non-linear feature of the input x.

Problem: Find x that maximally activates a(2)i over ‖x‖2 ≤ 1.
Claim:

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij )2

.

(Hint: Use Cauchy–Schwarz).

We can now display the image maximizing a(2)i for each i.

10/19



Example (UFLDL)

Train an autoencoder on 10× 10 images with one hidden layer.
Each hidden unit i computes:

a
(2)
i = f

 100∑
j=1

W
(1)
ij xj + b

(1)
j

 .

Think of a(2)i as some non-linear feature of the input x.

Problem: Find x that maximally activates a(2)i over ‖x‖2 ≤ 1.
Claim:

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij )2

.

(Hint: Use Cauchy–Schwarz).

We can now display the image maximizing a(2)i for each i.
10/19



Example (cont.)

100 hidden units on 10x10 pixel inputs:

The different hidden units have learned to detect edges at different
positions and orientations in the image.

11/19



Sparse neural networks

So far we discussed dense neural networks.

Dense networks have a lot of parameters to learn. Can be
inefficient or impossible to train.
Sparse models have been proposed in the literature.
Some of these models find inspiration from how the early
visual system is wired up in biology.

Dropouts: During training, randomly ignore or (“drop out”)
some neurons.
Can specify a dropout rate (i.e., a fixed probability 0 ≤ p ≤ 1 of

ignoring a given node).
Used to learn sparse models and prevent overfitting.

12/19



Sparse neural networks

So far we discussed dense neural networks.
Dense networks have a lot of parameters to learn. Can be
inefficient or impossible to train.

Sparse models have been proposed in the literature.
Some of these models find inspiration from how the early
visual system is wired up in biology.

Dropouts: During training, randomly ignore or (“drop out”)
some neurons.
Can specify a dropout rate (i.e., a fixed probability 0 ≤ p ≤ 1 of

ignoring a given node).
Used to learn sparse models and prevent overfitting.

12/19



Sparse neural networks

So far we discussed dense neural networks.
Dense networks have a lot of parameters to learn. Can be
inefficient or impossible to train.
Sparse models have been proposed in the literature.

Some of these models find inspiration from how the early
visual system is wired up in biology.

Dropouts: During training, randomly ignore or (“drop out”)
some neurons.
Can specify a dropout rate (i.e., a fixed probability 0 ≤ p ≤ 1 of

ignoring a given node).
Used to learn sparse models and prevent overfitting.

12/19



Sparse neural networks

So far we discussed dense neural networks.
Dense networks have a lot of parameters to learn. Can be
inefficient or impossible to train.
Sparse models have been proposed in the literature.
Some of these models find inspiration from how the early
visual system is wired up in biology.

Dropouts: During training, randomly ignore or (“drop out”)
some neurons.
Can specify a dropout rate (i.e., a fixed probability 0 ≤ p ≤ 1 of

ignoring a given node).
Used to learn sparse models and prevent overfitting.

12/19



Sparse neural networks

So far we discussed dense neural networks.
Dense networks have a lot of parameters to learn. Can be
inefficient or impossible to train.
Sparse models have been proposed in the literature.
Some of these models find inspiration from how the early
visual system is wired up in biology.

Dropouts: During training, randomly ignore or (“drop out”)
some neurons.
Can specify a dropout rate (i.e., a fixed probability 0 ≤ p ≤ 1 of

ignoring a given node).
Used to learn sparse models and prevent overfitting.

12/19



Dropouts

13/19



Using convolutions

Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

For example, images often have similar statistical properties in
different regions in space.
That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.
Can “convolve” the learned features with the larger image.

C(x, y) =
∑
m

∑
n

I(x+m, y +m)K(m,n).

14/19



Using convolutions

Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.
For example, images often have similar statistical properties in
different regions in space.

That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.
Can “convolve” the learned features with the larger image.

C(x, y) =
∑
m

∑
n

I(x+m, y +m)K(m,n).

14/19



Using convolutions

Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.
For example, images often have similar statistical properties in
different regions in space.
That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

Can “convolve” the learned features with the larger image.

C(x, y) =
∑
m

∑
n

I(x+m, y +m)K(m,n).

14/19



Using convolutions

Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.
For example, images often have similar statistical properties in
different regions in space.
That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.
Can “convolve” the learned features with the larger image.

C(x, y) =
∑
m

∑
n

I(x+m, y +m)K(m,n).

14/19



Using convolutions

Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.
For example, images often have similar statistical properties in
different regions in space.
That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.
Can “convolve” the learned features with the larger image.

C(x, y) =
∑
m

∑
n

I(x+m, y +m)K(m,n).
14/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Example

15/19



Filters

16/19



Pooling features

Once can also pool the features obtained via convolution
(max, mean, etc.).
Can lead to more robust features. Can lead to invariant
features.
For example, if the pooling regions are contiguous, then the
pooling units will be “translation invariant”, i.e., they won’t
change much if objects in the image are undergo a (small)
translation.

17/19



Example: handwritten digits

18/19



Neural networks with keras (TensorFlow)

Homework.
Please go through (and run on your own) the tutorial available at:

https://www.tensorflow.org/tutorials/keras/classification

If using Anaconda: conda install tensorflow.
Can also use Google Colab:

https://colab.research.google.com/
19/19

https://www.tensorflow.org/tutorials/keras/classification
https://colab.research.google.com/

