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Theorem. Let A ∈ Rm×n. Then we can factor

A = UΣV T ,
where

1 U ∈ Rm×m is an orthogonal matrix (UUT = UTU = I).

2 Σ ∈ Rm×n is a rectangular diagonal matrix with non-negative
diagonal.

3 V ∈ Rn×n is an orthogonal matrix (V V T = V TV = I).

Figure from J.M. Phillips, Mathematical Foundations for Data Analysis.
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Changing bases.

Suppose B = {b1, . . . ,bn}, C = {c1, . . . , cn} are bases of Rn.

Change of basis matrix from B to C is P = PB→C . Its columns
are the vectors of B expressed in the basis C.
If v ∈ Rn has coordinates (v1, . . . , vn) in basis B, meaning

v = v1b1 + v2b2 + · · ·+ vnbn,

then v has coordinates Pv = (w1, . . . , wn) in basis C, meaning

v = w1c1 + w2c2 + · · ·+ wncn.

Remark: PC→B = P−1B→C .
We think of a matrix A ∈ Rm×n as a linear transformation

A : Rn → Rm written with respect to bases C and D of Rn and
Rm, respectively:

A =

Ac1 Ac2 . . . Acn


Columns of A = images of the vectors ci, expressed in the basis D.
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Change of basis for a matrix

Suppose A : Rn → Rm is a linear operator from V = Rn to
W = Rm.

We write it with respect to bases C and D.
We would like to re-write it using bases B and E instead.

The matrix A becomes T−1AS in the new bases, where S = PB→C
and T = PE→D.
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Diagonalization

Special case: A : Rn → Rn, C = canonical basis.

Definition. A matrix A is diagonalizable if P−1AP = D for some
invertible matrix P and some diagonal matrix D.

In that case, B consists of eigenvectors of A associated to
eigenvalues di.

Theorem. A matrix A ∈ Rn×n is diagonalizable if and only if Rn

has a basis consisting of eigenvectors of A.

The columns of P are the eigenvectors of A expressed in the
canonical basis of Rn.
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Special case: symmetric matrix

Theorem. Let A ∈ Rn×n be a symmetric matrix (A = AT ). Then
there exists an orthonormal basis of Rn consisting of eigenvectors
of A.

Hence every symmetric matrix is diagonalizable.

The columns of P contain the (orthonormal) eigenvectors of A.

Hence PP T = P TP = I (P is an orthogonal matrix) and

A = PDP T .

In general, a given matrix is not diagonalizable.
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Back to SVD

The SVD diagonalizes A ∈ Rm×n with respect to two different
orthonormal bases of Rn and Rm.

We have UTAV = Σ = T−1AS.

Works for any matrix (even rectangular ones).
Columns of U are the left singular vectors of A
Columns of V are the right singular vectors of A.
Diagonal elements of Σ are the singular values of A.
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Properties of the SVD

Write

Σ =

(
D
0

)

Observe that

AAT = UΣV TV ΣTUT = UΣΣTUT = U

(
D2 0
0 0

)
UT .

ATA = V ΣTUTUΣV T = V ΣTΣV T = V D2V T .

These are eigendecompositions (diagonalizations) of the psd
matrices AAT and ATA.
Consequence:
Columns of V are the eigenvectors of ATA.
Columns of U are the eigenvectors of AAT .
The (non-zero) singular values of A are the square roots of the

(non-zero) eigenvalues of ATA or AAT .
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Application 1: Best rank k approximation

1. Best rank k approximation.
Let X ∈ Rn×p be a usual “data matrix”.

Corresponding svd: X = UΣV T =
∑min(n,p)

i=1 σiuiv
T
i , with

σ1 ≥ σ2 ≥ . . .
Theorem. For 1 ≤ k ≤ min(n, p), define:

Xk =
k∑

i=1

σiuiv
T
i .

Then min
B∈Rn×p

rank(B)≤k

‖X −B‖2F = ‖X −Xk‖2 =

p∑
j=k+1

σ2j

min
B∈Rn×p

rank(B)≤k

‖X −B‖2 = ‖X −Xk‖2 = σk+1.

The truncated SVD provides the best rank k approximation to X.
Applications: data compression, data recovery, etc.
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Example

Compressing the following image using the svd:

Original image X ∈ R683×1024.
X = UΣV T .
Approximate X by Xk.
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Example (cont.)

We examine
∑683

i=k+1 σ
2
i /
∑683

i=1 σ
2
i .
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Example (cont.)

Best rank 10 approximation:
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Example (cont.)

Best rank 50 approximation:
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Example (cont.)

Best rank 100 approximation:
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Example (cont.)

Best rank 200 approximation:
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Example (cont.)

Best rank 300 approximation:
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Example (cont.)

Best rank 400 approximation:
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Example (cont.)

Best rank 500 approximation:
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Example (cont.)

Best rank 600 approximation:
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Example (cont.)

Full image (rank 683):
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Application 2: Projecting data on low dimensional subspace

2. Projecting data on low dimensional subspace and PCA.
The rows x1, . . . , xn ∈ Rp of X are observations of a

p-dimensional vector.
We would like to find a (lower dimensional) subspace of Rp

approximating the data well

Assume the data is centered, i.e.,each column of X has mean 0.
For a given 1 ≤ k ≤ p, we want to solve:

min
F subspace of Rp

dimF=k

n∑
i=1

‖xi − πF (xi)‖22,

where πF (x) denotes the projection of x onto F .
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Application 2 (cont.)

Theorem. Let v1, . . . , vp denote the right singular vectors of X
associated to σ1 ≥ σ2 ≥ · · · ≥ σp. The optimal k dimensional
subspace solving the previous problem is span(v1, v2, . . . , vk).

(Sketch of proof) For any vector x ∈ Rp, we have

‖x‖22 = ‖πF (x)‖22 + ‖πF⊥(x)‖22.
Let f1, . . . , fk be an orthonormal basis of F . Then

min
F subspace of Rp

dimF=k

n∑
i=1

‖xi − πF (xi)‖22 = min
F subspace of Rp

dimF=k

n∑
i=1

‖πF⊥(xi)‖22

= max
F subspace of Rp

dimF=k

n∑
i=1

‖πF (xi)‖22 = max
f1,...,fk orthonormal

k∑
j=1

‖Xfj‖22

= max
f1,...,fk orthonormal

k∑
j=1

fTj X
TXfj

Using the min-max theorem for Rayleigh quotients, one can show that
this is maximized when {f1, . . . , fk} = {v1, . . . , vk}.
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Application 3: Recommender systems

3. Recommender system

Xij = ranking from person i of movie j.
23/25



Recommender system (cont.)

Idea. Try to explain why user i liked movie j as follows:

Each movie is a combination of some unknown independent “basic
features” (e.g. action, explosions, nature, romance, etc.)

Each features has a degree of importance (weights).

Each person likes a given combination of the basic features.

Write Xn×p = Un×nΣn×pV
T
p×p.

Then

Can try to label each learned “feature” (or genre) from data (e.g.
“Critically acclaimed western with a romantic component”) .

Other matrix factorization are possible (e.g. Non-negative matrix
factorization).
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Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

Define a sentence matrix A = (aij).
aij = frequency of word i in sentence j.

Jezek and Steinberger, 2004.

The SVD provides statistics to guide the choice of the best sentences.
Recall: the first k columns of V (rows of V T ) span the k-dim subspace

that best approximates the columns of A (the sentences).
E.g., Gong and Liu (2001). From each row of the V T matrix, the

sentence with the highest score is selected.
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