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Theorem. Let A € R™*™. Then we can factor

A=UxvVT,
where

© U € R™™ is an orthogonal matrix (UUT = UTU =1I).

@ X € R™*" is a rectangular diagonal matrix with non-negative
diagonal.

© V € R™™" is an orthogonal matrix (VVT = VTV = I).

VT

Figure from J.M. Phillips, Mathematical Foundations for Data Analysis.
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@ Suppose B = {by,...,b,}, C ={c1,...,c,} are bases of R".
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Changing bases.

@ Suppose B = {by,...,b,}, C ={c1,...,c,} are bases of R".
@ Change of basis matrix from B to C is P = Pg_,¢. Its columns
are the vectors of B expressed in the basis C.

o If v € R™ has coordinates (v1,...,v,) in basis 3, meaning

v =v1by +vabg + - +v,by,
then v has coordinates Pv = (w1, ..., w,) in basis C, meaning

U = w1C1 + W2C2 + -+ + WpCh.

@ Remark: Po_,5 = Pg_lw.

@ We think of a matrix A € R™*™ as a linear transformation

A : R™ — R™ written with respect to bases C and D of R™ and
R™, respectively:

| |
A= (Acl Acg ... Acy,
| |

Columns of A = images of the vectors c;, expressed in the basis D.
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Change of basis for a matrix

@ Suppose A : R™ — R™ is a linear operator from V' = R" to
W =R,
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Change of basis for a matrix

@ Suppose A : R™ — R™ is a linear operator from V = R" to
W =R,

@ We write it with respect to bases C and D.

@ We would like to re-write it using bases 13 and & instead.

Ve —-————:fi---> Wop

S = PB—»CT TT = Pep

-1

The matrix A becomes T~'AS in the new bases, where S = Pg_,¢
and T = Pg_>p.
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Diagonalization

Special case: A : R™ — R"™, C = canonical basis.

A
Ve —— W

P:PBﬁc/I\ /I\P:PB—MZ
pP~tAp

Ve ———— Vs

Definition. A matrix A is diagonalizable if P~* AP = D for some
invertible matrix P and some diagonal matrix D.
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Diagonalization

Special case: A : R™ — R"™, C = canonical basis.

A
Ve — Ve

P:PBﬁc/I\ /I\P:PB—MZ
pP~tAp

Ve ———— Vs

Definition. A matrix A is diagonalizable if P~* AP = D for some
invertible matrix P and some diagonal matrix D.

@ In that case, B consists of eigenvectors of A associated to

eigenvalues d;.

Theorem. A matrix A € R"*" is diagonalizable if and only if R™
has a basis consisting of eigenvectors of A.

@ The columns of P are the eigenvectors of A expressed in the

canonical basis of R".
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Special case: symmetric matrix

Theorem. Let A € R™" be a symmetric matrix (A = AT). Then
there exists an orthonormal basis of R™ consisting of eigenvectors
of A.

@ Hence every symmetric matrix is diagonalizable.
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Special case: symmetric matrix

Theorem. Let A € R™" be a symmetric matrix (A = AT). Then
there exists an orthonormal basis of R™ consisting of eigenvectors
of A.

@ Hence every symmetric matrix is diagonalizable.

@ The columns of P contain the (orthonormal) eigenvectors of A.

e Hence PPT = PTP = I (P is an orthogonal matrix) and
A=PDPT.

@ In general, a given matrix is not diagonalizable.
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Back to SVD

VT

@ The SVD diagonalizes A € R™*"™ with respect to two different

orthonormal bases of R" and R™.
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Back to SVD

VT

@ The SVD diagonalizes A € R™*"™ with respect to two different
orthonormal bases of R™ and R™.
o We have UTAV =¥ =T 1AS.

R — 4 L gm

VZPB_}CT TU—PSAD

vTAv =%
Ry LAVZX Ry

@ Works for any matrix (even rectangular ones).
@ Columns of U are the left singular vectors of A
@ Columns of V' are the right singular vectors of A.

@ Diagonal elements of X are the singular values of A. ,
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Properties of the SVD

Write
D
>~ (o)
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Properties of the SVD

Write
D
>~ (o)
Observe that

2
o AAT = UxVTVYTUT = UxxTuT = U(% 8>UT.

0o ATA=vxTUTusvT = vyTsvT =vD?VT.
@ These are eigendecompositions (diagonalizations) of the psd
matrices AAT and AT A.

Consequence:

o Columns of V' are the eigenvectors of AT A.

e Columns of U are the eigenvectors of AA™.

@ The (non-zero) singular values of A are the square roots of the
(non-zero) eigenvalues of AT A or AAT.
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Application 1: Best rank k£ approximation

1. Best rank k£ approximation.
@ Let X € R™ P be a usual “data matrix”.
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Application 1: Best rank k£ approximation

1. Best rank k£ approximation.

o Let X € R"*P be a usual “data matrix".

e Corresponding svd: X = UXVT = Z?;Hf(n’p) aiuiv;f, with
o1 > 09> ...

Theorem. For 1 < k < min(n,p), define:

k
Xk = ZaiUiUiT-
=1

p
Then min [|X — BlF = | X - Xi|*= Y of
BEeR"™ P .
rank(B)<k J=k+1
min ||X — Bl = [[X — X[l2 = o1
BeR™xP
rank(B)<k
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Application 1: Best rank k£ approximation

1. Best rank k£ approximation.

o Let X € R"*P be a usual “data matrix".

e Corresponding svd: X = UXVT = Z?;Hf(n’p) aiuiv;f, with
o1 > 09> ...

Theorem. For 1 < k < min(n,p), define:

k
Xk = ZaiUiUiT-
=1

p
Then min [|X — BlF = | X - Xi|*= Y of
BEeR"™ P .
rank(B)<k J=k+1
min ||X — Bl = [[X — X[l2 = o1
BeR™xP
rank(B)<k

@ The truncated SVD provides the best rank k approximation to X .

@ Applications: data compression, data recovery, etc.
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Compressing the following image using the svd:

RGSSX 1024

@ Original image X €
°o X =UxVT.
@ Approximate X by Xj.
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Example (con

We examine Z?iiﬂ 02/ 3988 52,

0.175 A

0.150 -

0.125

0.100 -

0.075 -

0.050 -

Fraction of error (Frobenius norm)

0.025 -

0.000 -

0 100 200 300 400 500 600 700
Rank of approximation
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Example (cont.)

@ Best rank 10 approximation:
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Example (cont.)

@ Best rank 50 approximation:
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Example (cont.)

@ Best rank 100 approximation:
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Example (cont.)

@ Best rank 200 approximation:
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Example (cont.)

@ Best rank 300 approximation:
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Example (cont.)

@ Best rank 400 approximation:
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Example (cont.)

@ Best rank 500 approximation:
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Example (cont.)

@ Best rank 600 approximation:

19/25



Example (cont.)

e Full image (rank 683):
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Application 2: Projecting data on low dimensional subspace

2. Projecting data on low dimensional subspace and PCA.
@ The rows z1,...,x, € RP of X are observations of a
p-dimensional vector.

@ We would like to find a (lower dimensional) subspace of RP
approximating the data weII
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Application 2: Projecting data on low dimensional subspace

2. Projecting data on low dimensional subspace and PCA.
@ The rows z1,...,x, € RP of X are observations of a
p-dimensional vector.

@ We would like to find a (lower dimensional) subspace of RP
approximating the data well

@ Assume the data is centered, i.e.,each column of X has mean O.
@ For a given 1 < k < p, we want to solve:

n

. - L
Fsubsrga}c% ofRPZ @i — mp(:)]]3,
dim F=k i=1

where p(x) denotes the projection of = onto F'. o1



Application 2 (cont.)

Theorem. Let vy, ..., v, denote the right singular vectors of X
associated to 01 > 09 > -+ > 0,,. The optimal k& dimensional
subspace solving the previous problem is span(vy, ve, ..., vg).
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Application 2 (cont.)

Theorem. Let vy, ..., v, denote the right singular vectors of X
associated to 01 > 09 > -+ > 0,,. The optimal k& dimensional
subspace solving the previous problem is span(vy, ve, ..., vg).

(Sketch of proof) For any vector 2 € R?, we have

|2]3 = ll7r(@)]13 + l7re (2)]3.
Let f1,..., fx be an orthonormal basis of F'. Then

F subspace of RP Z Hl‘l B 7TF i H2 T F bubspace of RP Z ”WFL Ti ”2

dim F=k i=1 dim F=k i=1
n k
= — X . 2
F subgple?c)é of RP Z ||7TF xl)||2 fi ,.4.7fkr¥)1rzﬁ1(onormal Z H fJ ”2
dim F'=k 1=1 j=1

- max Z FEXTX

fiyeeey fr orthonormal 4

Using the min-max theorem for Rayleigh quotients, one can show that
this is maximized when {f1,..., fi} = {v1,..., v}
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Application 3: Recommender systems

3. Recommender system

Bob |1 6 7
Carol (-° 7 3 9

pave ™ |6 2 8

@ X;; = ranking from person i of movie j.
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Recommender system (cont.)

Idea. Try to explain why user i liked movie j as follows:

@ Each movie is a combination of some unknown independent “basic
features” (e.g. action, explosions, nature, romance, etc.)

@ Each features has a degree of importance (weights).

@ Each person likes a given combination of the basic features.
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@ Can try to label each learned “feature” (or genre) from data (e.g.
“Critically acclaimed western with a romantic component”) .
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Recommender system (cont.)

Idea. Try to explain why user i liked movie j as follows:

@ Each movie is a combination of some unknown independent “basic
features” (e.g. action, explosions, nature, romance, etc.)

@ Each features has a degree of importance (weights).

@ Each person likes a given combination of the basic features.
@ Write X, xp = UnannXprj;p.
o Then Importance of

feature k

p
Lij = E Ui, O Vjk
k=1 |

Amount of feature k
in movie j

Ranking of Movie j How much User i
from User i likes feature k

@ Can try to label each learned “feature” (or genre) from data (e.g.
“Critically acclaimed western with a romantic component”) .

@ Other matrix factorization are possible (e.g. Non-negative matrix

factorization). 24/25



Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.
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o Define a sentence matrix A = (a;;).
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sentences K K

Kk .'.. % sentence
e, vectors

= b vT

o3~ @~
>
c

Jezek and Steinberger, 2004.

term
vectors
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@ The SVD provides statistics to guide the choice of the best sentences.

25 /25



Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

o Define a sentence matrix A = (a;;).
e a;; = frequency of word i in sentence j.

sentences K K

Kk .'.. % sentence
e, vectors

= b vT

o3~ @~
>
c

Jezek and Steinberger, 2004.

term
vectors

@ The SVD provides statistics to guide the choice of the best sentences.

@ Recall: the first k columns of V' (rows of V1) span the k-dim subspace
that best approximates the columns of A (the sentences).

25 /25



Application 4: Text summarization

4. Text summarization.
Give a text document, find a few sentences summarizing it.

o Define a sentence matrix A = (a;;).
e a;; = frequency of word i in sentence j.

sentences K K

Kk .'.. % sentence
e, vectors

= b vT

o3~ @~
>
c

Jezek and Steinberger, 2004.

term
vectors

@ The SVD provides statistics to guide the choice of the best sentences.

@ Recall: the first k columns of V' (rows of V1) span the k-dim subspace
that best approximates the columns of A (the sentences).

@ E.g., Gong and Liu (2001). From each row of the VT matrix, the
sentence with the highest score is selected.
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