MATH 637: Mathematical Techniques in Data Science The singular value decomposition

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware
April 29 \& May 1, 2020

Theorem. Let $A \in \mathbb{R}^{m \times n}$. Then we can factor

$$
A=U \Sigma V^{T}
$$

where
(1) $U \in \mathbb{R}^{m \times m}$ is an orthogonal matrix $\left(U U^{T}=U^{T} U=I\right)$.
(2) $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix with non-negative diagonal.
(3) $V \in \mathbb{R}^{n \times n}$ is an orthogonal matrix $\left(V V^{T}=V^{T} V=I\right)$.

Figure from J.M. Phillips, Mathematical Foundations for Data Analysis.

Changing bases.

- Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ are bases of \mathbb{R}^{n}.

Changing bases.

- Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ are bases of \mathbb{R}^{n}. - Change of basis matrix from \mathcal{B} to \mathcal{C} is $P=P_{\mathcal{B} \rightarrow \mathcal{C}}$. Its columns are the vectors of \mathcal{B} expressed in the basis \mathcal{C}.

Changing bases.

- Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ are bases of \mathbb{R}^{n}.
- Change of basis matrix from \mathcal{B} to \mathcal{C} is $P=P_{\mathcal{B} \rightarrow \mathcal{C}}$. Its columns are the vectors of \mathcal{B} expressed in the basis \mathcal{C}.
- If $v \in \mathbb{R}^{n}$ has coordinates $\left(v_{1}, \ldots, v_{n}\right)$ in basis \mathcal{B}, meaning

$$
v=v_{1} \mathbf{b}_{1}+v_{2} \mathbf{b}_{2}+\cdots+v_{n} \mathbf{b}_{n}
$$

then v has coordinates $P v=\left(w_{1}, \ldots, w_{n}\right)$ in basis \mathcal{C}, meaning

$$
v=w_{1} \mathbf{c}_{1}+w_{2} \mathbf{c}_{2}+\cdots+w_{n} \mathbf{c}_{n}
$$

Changing bases.

- Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ are bases of \mathbb{R}^{n}.
- Change of basis matrix from \mathcal{B} to \mathcal{C} is $P=P_{\mathcal{B} \rightarrow \mathcal{C}}$. Its columns are the vectors of \mathcal{B} expressed in the basis \mathcal{C}.
- If $v \in \mathbb{R}^{n}$ has coordinates $\left(v_{1}, \ldots, v_{n}\right)$ in basis \mathcal{B}, meaning

$$
v=v_{1} \mathbf{b}_{1}+v_{2} \mathbf{b}_{2}+\cdots+v_{n} \mathbf{b}_{n}
$$

then v has coordinates $P v=\left(w_{1}, \ldots, w_{n}\right)$ in basis \mathcal{C}, meaning

$$
v=w_{1} \mathbf{c}_{1}+w_{2} \mathbf{c}_{2}+\cdots+w_{n} \mathbf{c}_{n}
$$

- Remark: $P_{\mathcal{C} \rightarrow \mathcal{B}}=P_{\mathcal{B} \rightarrow \mathcal{C}}^{-1}$.

Changing bases.

- Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ are bases of \mathbb{R}^{n}.
- Change of basis matrix from \mathcal{B} to \mathcal{C} is $P=P_{\mathcal{B} \rightarrow \mathcal{C}}$. Its columns are the vectors of \mathcal{B} expressed in the basis \mathcal{C}.
- If $v \in \mathbb{R}^{n}$ has coordinates $\left(v_{1}, \ldots, v_{n}\right)$ in basis \mathcal{B}, meaning

$$
v=v_{1} \mathbf{b}_{1}+v_{2} \mathbf{b}_{2}+\cdots+v_{n} \mathbf{b}_{n}
$$

then v has coordinates $P v=\left(w_{1}, \ldots, w_{n}\right)$ in basis \mathcal{C}, meaning

$$
v=w_{1} \mathbf{c}_{1}+w_{2} \mathbf{c}_{2}+\cdots+w_{n} \mathbf{c}_{n}
$$

- Remark: $P_{\mathcal{C} \rightarrow \mathcal{B}}=P_{\mathcal{B} \rightarrow \mathcal{C}}^{-1}$.
- We think of a matrix $A \in \mathbb{R}^{m \times n}$ as a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ written with respect to bases \mathcal{C} and \mathcal{D} of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
A \mathbf{c}_{1} & A \mathbf{c}_{2} & \ldots & A \mathbf{c}_{\mathbf{n}} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Columns of $A=$ images of the vectors $\mathbf{c}_{\mathbf{i}}$, expressed in the basis \mathcal{D}.

Change of basis for a matrix

- Suppose $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear operator from $V=\mathbb{R}^{n}$ to $W=\mathbb{R}^{m}$.

Change of basis for a matrix

- Suppose $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear operator from $V=\mathbb{R}^{n}$ to $W=\mathbb{R}^{m}$.
- We write it with respect to bases \mathcal{C} and \mathcal{D}.

Change of basis for a matrix

- Suppose $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear operator from $V=\mathbb{R}^{n}$ to $W=\mathbb{R}^{m}$.
- We write it with respect to bases \mathcal{C} and \mathcal{D}.
- We would like to re-write it using bases \mathcal{B} and \mathcal{E} instead.

Change of basis for a matrix

- Suppose $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear operator from $V=\mathbb{R}^{n}$ to $W=\mathbb{R}^{m}$.
- We write it with respect to bases \mathcal{C} and \mathcal{D}.
- We would like to re-write it using bases \mathcal{B} and \mathcal{E} instead.

The matrix A becomes $T^{-1} A S$ in the new bases, where $S=P_{\mathcal{B} \rightarrow \mathcal{C}}$ and $T=P_{\mathcal{E} \rightarrow \mathcal{D}}$.

Diagonalization

Special case: $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{C}=$ canonical basis.

$$
P=\left.\left.P_{\mathcal{B} \rightarrow \mathcal{C}}\right|_{\substack{V_{\mathcal{C}}}} ^{\substack{A \\ V_{\mathcal{B}} \xrightarrow{P^{-1} A P}}}\right|_{V_{\mathcal{B}}} P=P_{\mathcal{B} \rightarrow \mathcal{C}}
$$

Definition. A matrix A is diagonalizable if $P^{-1} A P=D$ for some invertible matrix P and some diagonal matrix D.

Diagonalization

Special case: $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{C}=$ canonical basis.

$$
P=\left.P_{\mathcal{B} \rightarrow \mathcal{C}}\right|_{\substack{V_{\mathcal{C}} \xrightarrow{A} \\
V_{\mathcal{B}} \xrightarrow{P^{-1} A P}} \begin{array}{c}
V_{\mathcal{C}} \\
\\
V_{\mathcal{B}}
\end{array} P=P_{\mathcal{B} \rightarrow \mathcal{C}}}
$$

Definition. A matrix A is diagonalizable if $P^{-1} A P=D$ for some invertible matrix P and some diagonal matrix D.

- In that case, \mathcal{B} consists of eigenvectors of A associated to eigenvalues d_{i}.

Diagonalization

Special case: $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{C}=$ canonical basis.

$$
P=\left.\left.P_{\mathcal{B} \rightarrow \mathcal{C}}\right|_{\substack{V_{\mathcal{C}} \\ V_{\mathcal{B}} \xrightarrow{P^{-1} A P}}} ^{\substack{A \\ V_{\mathcal{C}}\\}}\right|_{\mathcal{B}} P=P_{\mathcal{B} \rightarrow \mathcal{C}}
$$

Definition. A matrix A is diagonalizable if $P^{-1} A P=D$ for some invertible matrix P and some diagonal matrix D.

- In that case, \mathcal{B} consists of eigenvectors of A associated to eigenvalues d_{i}.

Theorem. A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

Diagonalization

Special case: $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{C}=$ canonical basis.

$$
P=\left.P_{\mathcal{B} \rightarrow \mathcal{C}}\right|_{\substack{V_{\mathcal{C}}}} ^{\substack{A \\ V_{\mathcal{B}} \xrightarrow{P^{-1} A P}}} \overbrace{\mathcal{C}}
$$

Definition. A matrix A is diagonalizable if $P^{-1} A P=D$ for some invertible matrix P and some diagonal matrix D.

- In that case, \mathcal{B} consists of eigenvectors of A associated to eigenvalues d_{i}.

Theorem. A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

- The columns of P are the eigenvectors of A expressed in the canonical basis of \mathbb{R}^{n}.

Special case: symmetric matrix

Theorem. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $\left(A=A^{T}\right)$. Then there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of A.

- Hence every symmetric matrix is diagonalizable.

Special case: symmetric matrix

Theorem. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $\left(A=A^{T}\right)$. Then there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of A.

- Hence every symmetric matrix is diagonalizable.
- The columns of P contain the (orthonormal) eigenvectors of A.
- Hence $P P^{T}=P^{T} P=I$ (P is an orthogonal matrix) and

Special case: symmetric matrix

Theorem. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $\left(A=A^{T}\right)$. Then there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of A.

- Hence every symmetric matrix is diagonalizable.
- The columns of P contain the (orthonormal) eigenvectors of A.
- Hence $P P^{T}=P^{T} P=I$ (P is an orthogonal matrix) and

$$
A=P D P^{T} .
$$

Special case: symmetric matrix

Theorem. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $\left(A=A^{T}\right)$. Then there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of A.

- Hence every symmetric matrix is diagonalizable.
- The columns of P contain the (orthonormal) eigenvectors of A.
- Hence $P P^{T}=P^{T} P=I$ (P is an orthogonal matrix) and

$$
A=P D P^{T} .
$$

- In general, a given matrix is not diagonalizable.

Back to SVD

- The SVD diagonalizes $A \in \mathbb{R}^{m \times n}$ with respect to two different orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{m}.

Back to SVD

- The SVD diagonalizes $A \in \mathbb{R}^{m \times n}$ with respect to two different orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{m}.
- We have $U^{T} A V=\Sigma=T^{-1} A S$.

$$
V=P_{\mathcal{B} \rightarrow \mathcal{C}} \prod_{\mathbb{R}_{\mathcal{B}}^{n} \xrightarrow{\mathbb{R}_{\mathcal{C}}^{n}} \xrightarrow{A} \xrightarrow{U^{T} A V=\Sigma} \mathbb{R}_{\mathcal{D}}^{m}}^{\mathbb{R}_{\mathcal{E}}^{m}}
$$

Back to SVD

- The SVD diagonalizes $A \in \mathbb{R}^{m \times n}$ with respect to two different orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{m}.
- We have $U^{T} A V=\Sigma=T^{-1} A S$.

$$
V=P_{\mathcal{B} \rightarrow \mathcal{C}} \uparrow_{\mathbb{R}_{\mathcal{B}}^{n} \xrightarrow{\mathbb{R}_{\mathcal{C}}^{n}} \xrightarrow{A}}^{\substack{U^{T} A V=\Sigma}} \mathbb{R}_{\mathbb{D}}^{m}
$$

- Works for any matrix (even rectangular ones).

Back to SVD

- The SVD diagonalizes $A \in \mathbb{R}^{m \times n}$ with respect to two different orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{m}.
- We have $U^{T} A V=\Sigma=T^{-1} A S$.

$$
V=P_{\mathcal{B} \rightarrow \mathcal{C}} \prod_{\mathbb{R}_{\mathcal{B}}^{n} \xrightarrow{\mathbb{R}_{\mathcal{C}}^{n}} \xrightarrow{A}}^{\mathbb{R}_{\mathcal{D}}^{m}} \overbrace{U=P_{\mathcal{E} \rightarrow \mathcal{D}}} \mathbb{R}_{\mathcal{E}}^{m}
$$

- Works for any matrix (even rectangular ones).
- Columns of U are the left singular vectors of A
- Columns of V are the right singular vectors of A.
- Diagonal elements of Σ are the singular values of A.

Properties of the SVD

Write

$$
\Sigma=\binom{D}{\mathbf{0}}
$$

Properties of the SVD

Write

$$
\Sigma=\binom{D}{\mathbf{0}}
$$

Observe that

- $A A^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma \Sigma^{T} U^{T}=U\left(\begin{array}{cc}D^{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right) U^{T}$.
- $A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T}=V D^{2} V^{T}$.

Write

$$
\Sigma=\binom{D}{\mathbf{0}}
$$

Observe that

- $A A^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma \Sigma^{T} U^{T}=U\left(\begin{array}{cc}D^{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right) U^{T}$.
- $A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T}=V D^{2} V^{T}$.
- These are eigendecompositions (diagonalizations) of the psd matrices $A A^{T}$ and $A^{T} A$.

Write

$$
\Sigma=\binom{D}{\mathbf{0}}
$$

Observe that

- $A A^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma \Sigma^{T} U^{T}=U\left(\begin{array}{cc}D^{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right) U^{T}$.
- $A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T}=V D^{2} V^{T}$.
- These are eigendecompositions (diagonalizations) of the psd matrices $A A^{T}$ and $A^{T} A$.

Consequence:

- Columns of V are the eigenvectors of $A^{T} A$.
- Columns of U are the eigenvectors of $A A^{T}$.
- The (non-zero) singular values of A are the square roots of the (non-zero) eigenvalues of $A^{T} A$ or $A A^{T}$.

Application 1: Best rank k approximation

1. Best rank k approximation.

- Let $X \in \mathbb{R}^{n \times p}$ be a usual "data matrix".

Application 1: Best rank k approximation

1. Best rank k approximation.

- Let $X \in \mathbb{R}^{n \times p}$ be a usual "data matrix".
- Corresponding svd: $X=U \Sigma V^{T}=\sum_{i=1}^{\min (n, p)} \sigma_{i} u_{i} v_{i}^{T}$, with $\sigma_{1} \geq \sigma_{2} \geq \ldots$

Application 1: Best rank k approximation

1. Best rank k approximation.

- Let $X \in \mathbb{R}^{n \times p}$ be a usual "data matrix".
- Corresponding svd: $X=U \Sigma V^{T}=\sum_{i=1}^{\min (n, p)} \sigma_{i} u_{i} v_{i}^{T}$, with $\sigma_{1} \geq \sigma_{2} \geq \ldots$
Theorem. For $1 \leq k \leq \min (n, p)$, define:

$$
X_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

Application 1: Best rank k approximation

1. Best rank k approximation.

- Let $X \in \mathbb{R}^{n \times p}$ be a usual "data matrix".
- Corresponding svd: $X=U \Sigma V^{T}=\sum_{i=1}^{\min (n, p)} \sigma_{i} u_{i} v_{i}^{T}$, with $\sigma_{1} \geq \sigma_{2} \geq \ldots$
Theorem. For $1 \leq k \leq \min (n, p)$, define:

$$
X_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

Then

$$
\begin{aligned}
& \min _{\substack{B \in \mathbb{R}^{n \times p} \\
\operatorname{rank}(B) \leq k}}\|X-B\|_{F}^{2}=\left\|X-X_{k}\right\|^{2}=\sum_{j=k+1}^{p} \sigma_{j}^{2} \\
& \min _{\substack{B \in \mathbb{R}^{n \times p} \\
\operatorname{rank}(B) \leq k}}\|X-B\|_{2}=\left\|X-X_{k}\right\|_{2}=\sigma_{k+1} .
\end{aligned}
$$

Application 1: Best rank k approximation

1. Best rank k approximation.

- Let $X \in \mathbb{R}^{n \times p}$ be a usual "data matrix".
- Corresponding svd: $X=U \Sigma V^{T}=\sum_{i=1}^{\min (n, p)} \sigma_{i} u_{i} v_{i}^{T}$, with $\sigma_{1} \geq \sigma_{2} \geq \ldots$
Theorem. For $1 \leq k \leq \min (n, p)$, define:

$$
X_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

Then

$$
\begin{aligned}
& \min _{\substack{B \in \mathbb{R}^{n \times p} \\
\operatorname{rank}(B) \leq k}}\|X-B\|_{F}^{2}=\left\|X-X_{k}\right\|^{2}=\sum_{j=k+1}^{p} \sigma_{j}^{2} \\
& \min _{\substack{B \in \mathbb{R}^{n \times p} \\
\operatorname{rank}(B) \leq k}}\|X-B\|_{2}=\left\|X-X_{k}\right\|_{2}=\sigma_{k+1} .
\end{aligned}
$$

- The truncated SVD provides the best rank k approximation to X.
- Applications: data compression, data recovery, etc.

Example

Compressing the following image using the svd:

- Original image $X \in \mathbb{R}^{683 \times 1024}$.
- $X=U \Sigma V^{T}$.
- Approximate X by X_{k}.

Example (cont.)

We examine $\sum_{i=k+1}^{683} \sigma_{i}^{2} / \sum_{i=1}^{683} \sigma_{i}^{2}$.

Example (cont.)

- Best rank 10 approximation:

Example (cont.)

- Best rank 50 approximation:

Example (cont.)

- Best rank 100 approximation:

Example (cont.)

- Best rank 200 approximation:

Example (cont.)

- Best rank 300 approximation:

Example (cont.)

- Best rank 400 approximation:

Example (cont.)

- Best rank 500 approximation:

Example (cont.)

- Best rank 600 approximation:

Example (cont.)

- Full image (rank 683):

Application 2: Projecting data on low dimensional subspace

2. Projecting data on low dimensional subspace and PCA.

- The rows $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ of X are observations of a p-dimensional vector.
- We would like to find a (lower dimensional) subspace of \mathbb{R}^{p} approximating the data well

Application 2: Projecting data on low dimensional subspace

2. Projecting data on low dimensional subspace and PCA.

- The rows $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ of X are observations of a p-dimensional vector.
- We would like to find a (lower dimensional) subspace of \mathbb{R}^{p} approximating the data well

- Assume the data is centered, i.e.,each column of X has mean 0 .

Application 2: Projecting data on low dimensional subspace

2. Projecting data on low dimensional subspace and PCA.

- The rows $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ of X are observations of a p-dimensional vector.
- We would like to find a (lower dimensional) subspace of \mathbb{R}^{p} approximating the data well

- Assume the data is centered, i.e.,each column of X has mean 0 .
- For a given $1 \leq k \leq p$, we want to solve:

$$
\min _{\substack{\text { subspace of } \mathbb{R}^{p} \\ \operatorname{dim} F=k}} \sum_{i=1}^{n}\left\|x_{i}-\pi_{F}\left(x_{i}\right)\right\|_{2}^{2}
$$

where $\pi_{F}(x)$ denotes the projection of x onto F.

Application 2 (cont.)

Theorem. Let v_{1}, \ldots, v_{p} denote the right singular vectors of X associated to $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p}$. The optimal k dimensional subspace solving the previous problem is $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$.

Application 2 (cont.)

Theorem. Let v_{1}, \ldots, v_{p} denote the right singular vectors of X associated to $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p}$. The optimal k dimensional subspace solving the previous problem is $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$.
(Sketch of proof) For any vector $x \in \mathbb{R}^{p}$, we have

$$
\|x\|_{2}^{2}=\left\|\pi_{F}(x)\right\|_{2}^{2}+\left\|\pi_{F^{\perp}}(x)\right\|_{2}^{2}
$$

Let f_{1}, \ldots, f_{k} be an orthonormal basis of F. Then

$$
\begin{aligned}
& \min _{\substack{F \text { subspace of } \mathbb{R}^{p} \\
\operatorname{dim} F=k}} \sum_{i=1}^{n}\left\|x_{i}-\pi_{F}\left(x_{i}\right)\right\|_{2}^{2}=\min _{\substack{F \text { subspace of } \mathbb{R}^{p} \\
\operatorname{dim} F=k}} \sum_{i=1}^{n}\left\|\pi_{F}\left(x_{i}\right)\right\|_{2}^{2} \\
& =\max _{\substack{F \text { subspace of } \mathbb{R}^{p} \\
\operatorname{dim} F=k}} \sum_{i=1}^{n}\left\|\pi_{F}\left(x_{i}\right)\right\|_{2}^{2}=\max _{f_{1}, \ldots, f_{k} \text { orthonormal }}^{\max } \sum_{j=1}^{k}\left\|X f_{j}\right\|_{2}^{2} \\
& =\max _{f_{1}, \ldots, f_{k} \text { orthonormal }}^{\max } \sum_{j=1}^{k} f_{j}^{T} X^{T} X f_{j}
\end{aligned}
$$

Using the min-max theorem for Rayleigh quotients, one can show that this is maximized when $\left\{f_{1}, \ldots, f_{k}\right\}=\left\{v_{1}, \ldots, v_{k}\right\}$.

Application 3: Recommender systems

3. Recommender system

- $X_{i j}=$ ranking from person i of movie j.

Recommender system (cont.)

Idea. Try to explain why user i liked movie j as follows:

- Each movie is a combination of some unknown independent "basic features" (e.g. action, explosions, nature, romance, etc.)
- Each features has a degree of importance (weights).
- Each person likes a given combination of the basic features.

Recommender system (cont.)

Idea. Try to explain why user i liked movie j as follows:

- Each movie is a combination of some unknown independent "basic features" (e.g. action, explosions, nature, romance, etc.)
- Each features has a degree of importance (weights).
- Each person likes a given combination of the basic features.
- Write $X_{n \times p}=U_{n \times n} \Sigma_{n \times p} V_{p \times p}^{T}$.
- Then

Recommender system (cont.)

Idea. Try to explain why user i liked movie j as follows:

- Each movie is a combination of some unknown independent "basic features" (e.g. action, explosions, nature, romance, etc.)
- Each features has a degree of importance (weights).
- Each person likes a given combination of the basic features.
- Write $X_{n \times p}=U_{n \times n} \Sigma_{n \times p} V_{p \times p}^{T}$.
- Then

- Can try to label each learned "feature" (or genre) from data (e.g. "Critically acclaimed western with a romantic component").

Recommender system (cont.)

Idea. Try to explain why user i liked movie j as follows:

- Each movie is a combination of some unknown independent "basic features" (e.g. action, explosions, nature, romance, etc.)
- Each features has a degree of importance (weights).
- Each person likes a given combination of the basic features.
- Write $X_{n \times p}=U_{n \times n} \Sigma_{n \times p} V_{p \times p}^{T}$.
- Then

- Can try to label each learned "feature" (or genre) from data (e.g. "Critically acclaimed western with a romantic component").
- Other matrix factorization are possible (e.g. Non-negative matrix factorization).

Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

- Define a sentence matrix $A=\left(a_{i j}\right)$.
- $a_{i j}=$ frequency of word i in sentence j.

Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

- Define a sentence matrix $A=\left(a_{i j}\right)$.
- $a_{i j}=$ frequency of word i in sentence j.

Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

- Define a sentence matrix $A=\left(a_{i j}\right)$.
- $a_{i j}=$ frequency of word i in sentence j.

- The SVD provides statistics to guide the choice of the best sentences.

Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

- Define a sentence matrix $A=\left(a_{i j}\right)$.
- $a_{i j}=$ frequency of word i in sentence j.

- The SVD provides statistics to guide the choice of the best sentences.
- Recall: the first k columns of V (rows of V^{T}) span the k-dim subspace that best approximates the columns of A (the sentences).

Application 4: Text summarization

4. Text summarization.

Give a text document, find a few sentences summarizing it.

- Define a sentence matrix $A=\left(a_{i j}\right)$.
- $a_{i j}=$ frequency of word i in sentence j.

- The SVD provides statistics to guide the choice of the best sentences.
- Recall: the first k columns of V (rows of V^{T}) span the k-dim subspace that best approximates the columns of A (the sentences).
- E.g., Gong and Liu (2001). From each row of the V^{T} matrix, the sentence with the highest score is selected.

