MATH 637: Mathematical Techniques in Data Science Clustering I

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

May 4 \& 6, 2020

Supervised and unsupervised learning

Supervised learning problems:

- Data (X, Y) is "labelled" (input/output) with joint density $P(X, Y)$.
- We are mainly interested by the conditional density $P(Y \mid X)$.
- Example: regression problems, classification problems, etc..

Supervised learning problems:

- Data (X, Y) is "labelled" (input/output) with joint density $P(X, Y)$.
- We are mainly interested by the conditional density $P(Y \mid X)$.
- Example: regression problems, classification problems, etc..

Unsupervised learning problems:

- Data X is not labelled and has density $P(X)$.
- We want to infer properties of $P(X)$ without the help of a "supervisor" or "teacher".
- Examples: Density estimation, PCA, ICA, sparse autoencoder, clustering, etc..

Clustering

- Unsupervised problem.
- Work only with features/independent variables.
- Want to label points according to a measure of their similarity.

What is a cluster?

We try to partition observations into "clusters" such that:

- Intra-cluster distance is minimized.
- Inter-cluster distance is maximized.

For graphs, we want vertices in the same cluster to be highly connected, and vertices in different clusters to be mostly disconnected.

The K-means algorithm

- Goes back to Hugo Steinhaus (of the Banach-Steinhaus theorem) in 1957.

Steinhaus authored over 170 works. Unlike his student, Stefan Banach, who tended to specialize narrowly in the field of functional analysis, Steinhaus made contributions to a wide range of mathematical sub-disciplines, including geometry, probability theory, functional analysis, theory of trigonometric and Fourier series as well as mathematical logic. He also wrote in the area of applied mathematics and enthusiastically collaborated with engineers, geologists, economists, physicians, biologists and, in Kac's words, "even lawyers".

[^0]The K-means algorithm is a popular algorithm to cluster a set of points in \mathbb{R}^{p}.

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of points in \mathbb{R}^{p}.

- We are given n observations $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{p}$.

The K-means algorithm is a popular algorithm to cluster a set of points in \mathbb{R}^{p}.

- We are given n observations $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- We are given a number of clusters K.

The K-means algorithm is a popular algorithm to cluster a set of points in \mathbb{R}^{p}.

- We are given n observations $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- We are given a number of clusters K.
- We want a partition $\hat{S}=\left\{S_{1}, \ldots, S_{K}\right\}$ of $\left\{x_{1}, \ldots, x_{n}\right\}$ such that

$$
\hat{S}=\underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-\mu_{i}\right\|^{2}
$$

where $\mu_{i}=\frac{1}{\left|S_{i}\right|} \sum_{x_{j} \in S_{i}} x_{j}$ is the mean of the points in S_{i} (the "center" of S_{i}).

The K-means algorithm is a popular algorithm to cluster a set of points in \mathbb{R}^{p}.

- We are given n observations $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- We are given a number of clusters K.
- We want a partition $\hat{S}=\left\{S_{1}, \ldots, S_{K}\right\}$ of $\left\{x_{1}, \ldots, x_{n}\right\}$ such that

$$
\hat{S}=\underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-\mu_{i}\right\|^{2}
$$

where $\mu_{i}=\frac{1}{\left|S_{i}\right|} \sum_{x_{j} \in S_{i}} x_{j}$ is the mean of the points in S_{i} (the "center" of S_{i}).

- The above problem is NP hard.

The K-means algorithm is a popular algorithm to cluster a set of points in \mathbb{R}^{p}.

- We are given n observations $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- We are given a number of clusters K.
- We want a partition $\hat{S}=\left\{S_{1}, \ldots, S_{K}\right\}$ of $\left\{x_{1}, \ldots, x_{n}\right\}$ such that

$$
\hat{S}=\underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-\mu_{i}\right\|^{2}
$$

where $\mu_{i}=\frac{1}{\left|S_{i}\right|} \sum_{x_{j} \in S_{i}} x_{j}$ is the mean of the points in S_{i} (the "center" of S_{i}).

- The above problem is NP hard.
- Efficient approximation algorithms exist (converge to a local minimum though).

Some equivalent formulations

- For any $S \subset\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\mu_{S}:=\frac{1}{|S|} \sum_{x_{i} \in S} x_{i}=\underset{m}{\operatorname{argmin}} \sum_{x_{i} \in S}\left\|x_{i}-m\right\|^{2} .
$$

Some equivalent formulations

- For any $S \subset\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\mu_{S}:=\frac{1}{|S|} \sum_{x_{i} \in S} x_{i}=\underset{m}{\operatorname{argmin}} \sum_{x_{i} \in S}\left\|x_{i}-m\right\|^{2} .
$$

Thus, the K-means problem is equivalent to

$$
\underset{S,\left(m_{l}\right)_{l=1}^{K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

Some equivalent formulations

- For any $S \subset\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\mu_{S}:=\frac{1}{|S|} \sum_{x_{i} \in S} x_{i}=\underset{m}{\operatorname{argmin}} \sum_{x_{i} \in S}\left\|x_{i}-m\right\|^{2} .
$$

Thus, the K-means problem is equivalent to

$$
\underset{S,\left(m_{l}\right)_{l=1}^{K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

- Other equivalent problem: solve

$$
\underset{\left(m_{l}\right)_{=1}^{K}}{\operatorname{argmin}} \sum_{j=1}^{n} \min _{1 \leq i \leq K}\left\|x_{j}-m_{i}\right\|^{2},
$$

and let $S_{i}:=\left\{x_{j}:\left\|x_{j}-m_{i}\right\|^{2} \leq\left\|x_{j}-m_{k}\right\|^{2} \forall k=1, \ldots, K\right\}$.

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

- Denote by $C(i)$ the cluster assigned to x_{i}.

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

- Denote by $C(i)$ the cluster assigned to x_{i}.
- Lloyds's algorithm provides a heuristic method for optimizing the K-means objective function.

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

- Denote by $C(i)$ the cluster assigned to x_{i}.
- Lloyds's algorithm provides a heuristic method for optimizing the K-means objective function.
Start with a "cluster centers" assignment $m_{1}^{(0)}, \ldots, m_{K}^{(0)}$. Set
$t:=0$. Repeat:

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

- Denote by $C(i)$ the cluster assigned to x_{i}.
- Lloyds's algorithm provides a heuristic method for optimizing the K-means objective function.
Start with a "cluster centers" assignment $m_{1}^{(0)}, \ldots, m_{K}^{(0)}$. Set $t:=0$. Repeat:
(1) Assign each point x_{j} to the cluster whose mean is closest to x_{j} :

$$
S_{i}^{(t)}:=\left\{x_{j}:\left\|x_{j}-m_{i}^{(t)}\right\|^{2} \leq\left\|x_{j}-m_{k}^{(t)}\right\|^{2} \forall k=1, \ldots, K\right\} .
$$

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

- Denote by $C(i)$ the cluster assigned to x_{i}.
- Lloyds's algorithm provides a heuristic method for optimizing the K-means objective function.
Start with a "cluster centers" assignment $m_{1}^{(0)}, \ldots, m_{K}^{(0)}$. Set $t:=0$. Repeat:
(1) Assign each point x_{j} to the cluster whose mean is closest to x_{j} :

$$
S_{i}^{(t)}:=\left\{x_{j}:\left\|x_{j}-m_{i}^{(t)}\right\|^{2} \leq\left\|x_{j}-m_{k}^{(t)}\right\|^{2} \forall k=1, \ldots, K\right\} .
$$

(2) Compute the average $m_{i}^{(t+1)}$ of the observations in cluster i :

$$
m_{i}^{(t+1)}:=\frac{1}{\left|S_{i}^{(t)}\right|} \sum_{x_{j} \in S_{i}^{(t)}} x_{j} .
$$

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

- Denote by $C(i)$ the cluster assigned to x_{i}.
- Lloyds's algorithm provides a heuristic method for optimizing the K-means objective function.
Start with a "cluster centers" assignment $m_{1}^{(0)}, \ldots, m_{K}^{(0)}$. Set $t:=0$. Repeat:
(1) Assign each point x_{j} to the cluster whose mean is closest to x_{j} :

$$
S_{i}^{(t)}:=\left\{x_{j}:\left\|x_{j}-m_{i}^{(t)}\right\|^{2} \leq\left\|x_{j}-m_{k}^{(t)}\right\|^{2} \forall k=1, \ldots, K\right\} .
$$

(2) Compute the average $m_{i}^{(t+1)}$ of the observations in cluster i :

$$
m_{i}^{(t+1)}:=\frac{1}{\left|S_{i}^{(t)}\right|} \sum_{x_{j} \in S_{i}^{(t)}} x_{j}
$$

(3) $t \leftarrow t+1$.

Until convergence.

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially minimize:

$$
\sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially minimize:

$$
\sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

- Both steps of the algorithm decrease the objective.

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially minimize:

$$
\sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

- Both steps of the algorithm decrease the objective.
- Thus, Lloyds's algorithm converges a local minimum of the objective function.

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially minimize:

$$
\sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

- Both steps of the algorithm decrease the objective.
- Thus, Lloyds's algorithm converges a local minimum of the objective function.
There is no guarantee that Lloyds' algorithm will find the global optimum.

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially minimize:

$$
\sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

- Both steps of the algorithm decrease the objective.
- Thus, Lloyds's algorithm converges a local minimum of the objective function.
There is no guarantee that Lloyds' algorithm will find the global optimum.
As a result, we use different starting points (i.e., different choices for the initial means $m_{i}^{(0)}$).

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially minimize:

$$
\sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

- Both steps of the algorithm decrease the objective.
- Thus, Lloyds's algorithm converges a local minimum of the objective function.
There is no guarantee that Lloyds' algorithm will find the global optimum.
As a result, we use different starting points (i.e., different choices for the initial means $m_{i}^{(0)}$).
Common initialization methods:
(1) The Forgy method: Pick K observations at random from $\left\{x_{1}, \ldots, x_{n}\right\}$ and use these as the initial means.

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially minimize:

$$
\sum_{i=1}^{K} \sum_{x_{j} \in S_{i}}\left\|x_{j}-m_{i}\right\|^{2}
$$

- Both steps of the algorithm decrease the objective.
- Thus, Lloyds's algorithm converges a local minimum of the objective function.
There is no guarantee that Lloyds' algorithm will find the global optimum.
As a result, we use different starting points (i.e., different choices for the initial means $m_{i}^{(0)}$).
Common initialization methods:
(1) The Forgy method: Pick K observations at random from $\left\{x_{1}, \ldots, x_{n}\right\}$ and use these as the initial means.
(2) Random partition: Randomly assign a cluster to each observation and compute the mean of each cluster.

Illustration of the K-means algorithm

- 100 random points in \mathbb{R}^{2}.

Illustration of the K-means algorithm

- 100 random points in \mathbb{R}^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Illustration of the K-means algorithm

- 100 random points in \mathbb{R}^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Illustration of the K-means algorithm

- 100 random points in R^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Illustration of the K-means algorithm

- 100 random points in R^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Illustration of the K-means algorithm

- 100 random points in R^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Illustration of the K-means algorithm

- 100 random points in R^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Illustration of the K-means algorithm

- 100 random points in R^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Illustration of the K-means algorithm

- 100 random points in R^{2}.
- The algorithm converges in 7 iterations (with a random centers initialization).

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means clustering.

Consistency of K-means

D. Pollard (1981) proved a form of consistency for K-means clustering.

- Assume $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p}$ are iid from a distribution P on \mathbb{R}^{p}.
- Let P_{n} denote the empirical measure for a sample of size n.
- For a given probability measure Q on \mathbb{R}^{p}, and any set $A \subset \mathbb{R}^{p}$, let

$$
\Phi(A, Q):=\int \min _{a \in A}\|x-a\|^{2} d Q(x)
$$

and let

$$
m_{k}(Q):=\inf \{\Phi(A, Q): A \text { contains } k \text { or fewer points }\} .
$$

- For a given k, the set $A_{n}=A_{n}(k)$ of optimal cluster centers is chosen to satisfy

$$
\Phi\left(A_{n}, P_{n}\right)=m_{k}\left(P_{n}\right) .
$$

- Let $\bar{A}=\bar{A}(k)$ satisfy

$$
\Phi(\bar{A}, P)=m_{k}(P) .
$$

Consistency of K-means (cont.)

Theorem:(Pollard, 1981)
Suppose:

- $\int\|x\|^{2} d P(x)<\infty$ and
- for $j=1,2, \ldots, k$ there is a unique set $\bar{A}(j)$ for which $\Phi(\bar{A}(j), P)=m_{j}(P)$.
Then $A_{n} \rightarrow \bar{A}(k)$ a.s. (in the Hausdorff distance), and $\Phi\left(A_{n}, P_{n}\right) \rightarrow m_{k}(P)$ a.s..

Consistency of K-means (cont.)

Theorem:(Pollard, 1981)
Suppose:

- $\int\|x\|^{2} d P(x)<\infty$ and
- for $j=1,2, \ldots, k$ there is a unique set $\bar{A}(j)$ for which $\Phi(\bar{A}(j), P)=m_{j}(P)$.
Then $A_{n} \rightarrow \bar{A}(k)$ a.s. (in the Hausdorff distance), and $\Phi\left(A_{n}, P_{n}\right) \rightarrow m_{k}(P)$ a.s..
- Pollard's theorem guarantees consistency under mild assumptions.

Consistency of K-means (cont.)

Theorem:(Pollard, 1981)
Suppose:

- $\int\|x\|^{2} d P(x)<\infty$ and
- for $j=1,2, \ldots, k$ there is a unique set $\bar{A}(j)$ for which $\Phi(\bar{A}(j), P)=m_{j}(P)$.
Then $A_{n} \rightarrow \bar{A}(k)$ a.s. (in the Hausdorff distance), and $\Phi\left(A_{n}, P_{n}\right) \rightarrow m_{k}(P)$ a.s..
- Pollard's theorem guarantees consistency under mild assumptions.
- Note however, that the theorem assumes that the clustering was obtain by globally minimizing the K-means objective function (not true in applications).

Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?

```
# Load zip data
est = KMeans(n_clusters=10, verbose=1) # Note: verbose=1 is just to
                                    # see what sklearn is doing...
est.fit(X_train)
Prop_mat = np.zeros((10,10)) # Percentage of label i that is digit j
for i in range(10):
    N_i = np.sum(est.labels_ == i) # Number of samples with label i
    for j in range(10):
        Prop_mat[i,j] = np.sum(y_train[est.labels_ == i] == j)/
                        np.double(N_i)*100
```


Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?

```
# Load zip data
est = KMeans(n_clusters=10, verbose=1) # Note: verbose=1 is just to
                                    # see what sklearn is doing...
est.fit(X_train)
Prop_mat = np.zeros((10,10)) # Percentage of label i that is digit j
for i in range(10):
    N_i = np.sum(est.labels_ == i) # Number of samples with label i
    for j in range(10):
        Prop_mat[i,j] = np.sum(y_train[est.labels_ == i] == j)/
                            np.double(N_i)*100
```

Prop_mat $=$
$\left(\begin{array}{cccccccccc}0.00 & 0.00 & 2.45 & 0.38 & 0.94 & 0.57 & 0.00 & \mathbf{8 3 . 9 6} & 0.19 & 11.51 \\ 14.78 & 0.00 & 0.77 & 0.26 & 0.77 & 14.40 & \mathbf{6 8 . 6 4} & 0.00 & 0.39 & 0.00 \\ 1.08 & 0.46 & 7.57 & 11.13 & 0.77 & 10.66 & 0.31 & 0.62 & \mathbf{6 6 . 4 6} & 0.93 \\ \mathbf{9 0 . 3 7} & 0.00 & 2.28 & 0.18 & 0.18 & 1.23 & 5.08 & 0.00 & 0.70 & 0.00 \\ \mathbf{8 8 . 9 6} & 0.00 & 0.51 & 0.34 & 0.00 & 2.72 & 7.13 & 0.00 & 0.34 & 0.00 \\ 1.08 & 0.00 & \mathbf{8 6 . 1 5} & 1.85 & 2.15 & 1.38 & 5.54 & 0.31 & 1.54 & 0.00 \\ 1.41 & 0.00 & 5.66 & 1.13 & \mathbf{6 2 . 2 3} & 5.66 & 1.41 & 3.25 & 1.41 & 17.82 \\ 1.63 & 0.00 & 3.69 & \mathbf{5 9 . 2 2} & 0.00 & 32.00 & 0.00 & 0.00 & 3.25 & 0.22 \\ 0.00 & \mathbf{9 3 . 0 3} & 0.37 & 0.09 & 3.90 & 0.00 & 0.84 & 0.28 & 1.02 & 0.46 \\ 0.00 & 0.12 & 1.10 & 1.46 & 16.93 & 0.61 & 0.24 & 20.46 & 4.99 & \mathbf{5 4 . 0 8}\end{array}\right)$

Spectral clustering: overview

We discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

We discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

We discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.

We discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.

We discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the graph Laplacian.

We discussed how K-means can be used to cluster points in \mathbb{R}^{p}.
Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various "types" of data (not only points in \mathbb{R}^{p}).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the graph Laplacian.
(9) Cluster the graph using the eigenvectors of the graph Laplacian using the K-means algorithm.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.

- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.

- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j}
$$

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.

- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j} .
$$

- The degree matrix of G is $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.

- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j} .
$$

- The degree matrix of G is $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.
- We denote the complement of $A \subset V$ by \bar{A}.

Notation

We will use the following notation/conventions:

- $G=(V, E)$ a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{i j} \geq 0$.

- The adjacency matrix of G is $W=W_{G}=\left(w_{i j}\right)_{i, j=1}^{n}$. We will assume W is symmetric (undirected graphs).
- The degree of v_{i} is

$$
d_{i}:=\sum_{j=1}^{n} w_{i j} .
$$

- The degree matrix of G is $D:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.
- We denote the complement of $A \subset V$ by \bar{A}.
- If $A \subset V$, then we let $\mathbb{1}_{A}=\left(f_{1}, \ldots, f_{n}\right)^{T} \in \mathbb{R}^{n}$, where $f_{i}=1$ if $v_{i} \in A$ and 0 otherwise.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).
- Let $d_{i j}:=d\left(x_{i}, x_{j}\right)$, the distance between x_{i} and x_{j}.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).
- Let $d_{i j}:=d\left(x_{i}, x_{j}\right)$, the distance between x_{i} and x_{j}.
- From $d_{i j}$ (or $s_{i j}$), we naturally build a similarity graph.

Similarity graphs

- We assume we are given a measure of similarity s between data points $x_{1}, \ldots, x_{n} \in \mathcal{X}$:

$$
s: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)
$$

- We denote by $s_{i j}:=s\left(x_{i}, x_{j}\right)$ the measure of similarity between x_{i} and x_{j}.
- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).
- Let $d_{i j}:=d\left(x_{i}, x_{j}\right)$, the distance between x_{i} and x_{j}.
- From $d_{i j}$ (or $s_{i j}$), we naturally build a similarity graph.
- We will discuss 3 popular ways of building a similarity graph.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(2) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(2) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

- the k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of $x_{i} \mathbf{O R} x_{i}$ is among the k nearest neighbords of x_{j}.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(2) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

- the k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of $x_{i} \mathbf{O R} x_{i}$ is among the k nearest neighbords of x_{j}.
- the mutual k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of x_{i} AND x_{i} is among the k nearest neighbors of x_{j}.

Similarity graphs (cont.)

Vertex set $=\left\{v_{1}, \ldots, v_{n}\right\}$ where n is the number of data points.
(1) The ϵ-neighborhood graph: Connect all points whose pairwise distances are smaller than some $\epsilon>0$. We usually don't weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).
(c) The k-nearest neighbor graph: The goal is to connect v_{i} to v_{j} if x_{j} is among the k nearest neighbords of x_{i}. However, this leads to a directed graph. We therefore define:

- the k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of $x_{i} \mathbf{O R} x_{i}$ is among the k nearest neighbords of x_{j}.
- the mutual k-nearest neighbor graph: v_{i} is adjacent to v_{j} iff x_{j} is among the k nearest neighbords of x_{i} AND x_{i} is among the k nearest neighbors of x_{j}.
We weight the edges by the similarity of their endpoints.

Similarity graphs (cont.)

(3) The fully connected graph: Connect all points with edge weights $s_{i j}$.

Similarity graphs (cont.)

(3) The fully connected graph: Connect all points with edge weights $s_{i j}$. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$
s_{i j}=s\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right) \quad\left(\sigma^{2}>0\right)
$$

Note: σ^{2} controls the width of the neighborhoods.

Similarity graphs (cont.)

(3) The fully connected graph: Connect all points with edge weights $s_{i j}$. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$
s_{i j}=s\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right) \quad\left(\sigma^{2}>0\right)
$$

Note: σ^{2} controls the width of the neighborhoods.
All graphs mentioned above are regularly used in spectral clustering.

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W .
$$

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W
$$

(2) The normalized symmetric Laplacian is

$$
L_{\mathrm{sym}}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}
$$

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W
$$

(2) The normalized symmetric Laplacian is

$$
L_{\mathrm{sym}}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}
$$

(3) The normalized "random walk" Laplacian is

$$
L_{\mathrm{rw}}:=D^{-1} L=I-D^{-1} W
$$

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:
(1) The unnormalized Laplacian is

$$
L:=D-W .
$$

(2) The normalized symmetric Laplacian is

$$
L_{\mathrm{sym}}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2} .
$$

(3) The normalized "random walk" Laplacian is

$$
L_{\mathrm{rw}}:=D^{-1} L=I-D^{-1} W .
$$

We begin by studying properties of the unnormalized Laplacian.

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) L is symmetric and positive semidefinite.

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) L is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$.

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) L is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$. Proof:

Proposition: The matrix L satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) L is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$.

Proof: To prove (1),

$$
\begin{aligned}
f^{T} L f=f^{T} D f-f^{T} W f & =\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j=1}^{n} w_{i j} f_{i} f_{j} \\
& =\frac{1}{2}\left(\sum_{i=1}^{n} d_{i} f_{i}^{2}-2 \sum_{i, j=1}^{n} w_{i j} f_{i} f_{j}+\sum_{j=1}^{n} d_{j} f_{j}^{2}\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
\end{aligned}
$$

(2) follows from (1). (3) is easy.

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.

The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.
Proof:

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.
Proof: If f is an eigenvector associated to $\lambda=0$, then

$$
0=f^{T} L f=\sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

It follows that $f_{i}=f_{j}$ whenever $w_{i j}>0$. Thus f is constant on the connected components of G. We conclude that the eigenspace of 0 is contained in $\operatorname{span}\left(\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}\right)$. Conversely, it is not hard to see that each $\mathbb{1}_{A_{i}}$ is an eigenvector associated to 0 (write L in block diagonal form).

Proposition: The normalized Laplacians satisfy the following properties:
(1) For every $f \in \mathbb{R}^{n}$, we have

$$
f^{T} L_{\mathrm{sym}} f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(\frac{f_{i}}{\sqrt{d_{i}}}-\frac{f_{j}}{\sqrt{d_{j}}}\right)^{2}
$$

(2) λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ is an eigenvalue of $L_{\text {sym }}$ with eigenvector $w=D^{1 / 2} u$.
(3) λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem $L u=\lambda D u$.

Proof: The proof of (1) is similar to the proof of the analogous result for the unnormalized Laplacian. (2) and (3) follow easily by using appropriate rescalings.

Proposition: Let G be an undirected graph with non-negative weights. Then:
(1) The multiplicity k of the eigenvalue 0 of both L_{sym} and L_{rw} equals the number of connected components A_{1}, \ldots, A_{k} in the graph.
(2) For L_{rw}, the eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{i}}, i=1, \ldots, k$.
(3) For $L_{\text {sym }}$, the eigenspace of eigenvalue 0 is spanned by the vectors $D^{1 / 2} \mathbb{1}_{A_{i}}, i=1, \ldots, k$.
Proof: Similar to the proof of the analogous result for the unnormalized Laplacian.

[^0]: Source: Wikipedia.

