MATH 637: Mathematical Techniques in Data Science Consistency of Linear Regression

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 24, 2020

Distribution of regression coefficients

Observations $Y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$.

Distribution of regression coefficients

Observations $Y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Assumptions:

$$Y_i = \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + \epsilon_i \qquad (\epsilon_i = \text{error}).$$

Distribution of regression coefficients

Observations $Y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Assumptions:

•
$$Y_i = \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + \epsilon_i$$
 ($\epsilon_i = \text{error}$).
In other words:

$$Y = X\beta + \epsilon.$$

 $(\beta = (\beta_1, \dots \beta_p)$ is a fixed unknown vector)

Observations $Y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Assumptions:

•
$$Y_i = \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + \epsilon_i$$
 ($\epsilon_i = \text{error}$).
In other words:

$$Y = X\beta + \epsilon.$$

 $(\beta = (\beta_1, \dots, \beta_p)$ is a fixed unknown vector)

2 x_{ij} are non-random. ϵ_i are random.

Observations $Y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Assumptions:

•
$$Y_i = \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + \epsilon_i$$
 ($\epsilon_i = \text{error}$).
In other words:

$$Y = X\beta + \epsilon.$$

 $(\beta = (\beta_1, \dots, \beta_p)$ is a fixed unknown vector)

2 x_{ij} are non-random. ϵ_i are random.

$$old o$$
 ϵ_i are independent $N(0,\sigma^2).$

We have

$$\hat{\beta} = (X^T X)^{-1} X^T Y.$$

Observations $Y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Assumptions:

•
$$Y_i = \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + \epsilon_i$$
 ($\epsilon_i = \text{error}$).
In other words:

$$Y = X\beta + \epsilon.$$

 $(\beta = (\beta_1, \dots, \beta_p)$ is a fixed unknown vector)

2
$$x_{ij}$$
 are non-random. ϵ_i are random.

(a)
$$\epsilon_i$$
 are independent $N(0, \sigma^2)$.

We have

$$\hat{\beta} = (X^T X)^{-1} X^T Y.$$

What is the distribution of $\hat{\beta}$?

Recall:
$$X = (X_1, \dots, X_p) \sim N(\mu, \Sigma)$$
 where
• $\mu \in \mathbb{R}^p$,
• $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite,
if

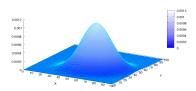
$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Recall:
$$X = (X_1, \dots, X_p) \sim N(\mu, \Sigma)$$
 where
• $\mu \in \mathbb{R}^p$,
• $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite,
if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Multivariate Normal Distribution

Bivariate case:

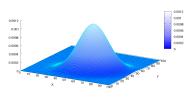


Recall:
$$X = (X_1, \dots, X_p) \sim N(\mu, \Sigma)$$
 where
• $\mu \in \mathbb{R}^p$,
• $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite,
if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Multivariate Normal Distribution

Bivariate case:



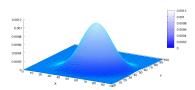
We have

 $E(X) = \mu$, $Cov(X_i, X_j) = \sigma_{ij}$.

Recall:
$$X = (X_1, \dots, X_p) \sim N(\mu, \Sigma)$$
 where
• $\mu \in \mathbb{R}^p$,
• $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{p \times p}$ is positive definite,
if

$$P(X \in A) = \frac{1}{\sqrt{(2\pi)^p \det \Sigma}} \int_A e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx_1 \dots dx_p.$$

Bivariate case:



We have

 $E(X) = \mu$, $Cov(X_i, X_j) = \sigma_{ij}$.

If Y=c+BX, where $c\in\mathbb{R}^p$ and $B\in\mathbb{R}^{m\times p},$ then $Y\sim N(c+B\mu,B\Sigma B^T).$

Distribution of the regression coefficients (cont.)

Back to our problem: $Y = X\beta + \epsilon$ where ϵ_i are iid $N(0, \sigma^2)$. We have

$$Y \sim N(X\beta, \sigma^2 I).$$

Back to our problem: $Y = X\beta + \epsilon$ where ϵ_i are iid $N(0, \sigma^2)$. We have

$$Y \sim N(X\beta, \sigma^2 I).$$

Therefore,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y} \sim N(\boldsymbol{\beta},\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}).$$

Back to our problem: $Y = X\beta + \epsilon$ where ϵ_i are iid $N(0, \sigma^2)$. We have

$$Y \sim N(X\beta, \sigma^2 I).$$

Therefore,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y} \sim N(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}).$$

In particular,

$$E(\hat{\beta}) = \beta.$$

Thus, $\hat{\beta}$ is **unbiased**.

• We saw that $E(\hat{\beta}) = \beta$.

- We saw that $E(\hat{\beta}) = \beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n)\to\beta.$

- We saw that $E(\hat{\beta}) = \beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n)\to\beta.$

A sequence of estimators $\{\theta_n\}_{n=1}^{\infty}$ of a parameter θ is said to be consistent if $\theta_n \to \theta$ in probability $(\theta_n \xrightarrow{p} \theta)$ as $n \to \infty$.

- We saw that $E(\hat{\beta}) = \beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n)\to\beta.$

A sequence of estimators $\{\theta_n\}_{n=1}^{\infty}$ of a parameter θ is said to be **consistent** if $\theta_n \to \theta$ in probability $(\theta_n \xrightarrow{p} \theta)$ as $n \to \infty$. (Recall: $\theta_n \xrightarrow{p} \theta$ if for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\theta_n - \theta| \ge \epsilon) = 0.$$

- We saw that $E(\hat{\beta}) = \beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n)\to\beta.$

A sequence of estimators $\{\theta_n\}_{n=1}^{\infty}$ of a parameter θ is said to be **consistent** if $\theta_n \to \theta$ in probability $(\theta_n \xrightarrow{p} \theta)$ as $n \to \infty$. (Recall: $\theta_n \xrightarrow{p} \theta$ if for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\theta_n - \theta| \ge \epsilon) = 0.$$

In order to prove that $\hat{\beta}_n$ (estimator with n samples) is consistent, we will make some assumptions on the *data generating model*.

- We saw that $E(\hat{\beta}) = \beta$.
- What happens as the sample size n goes to infinity? We expect $\hat{\beta}=\hat{\beta}(n)\to\beta.$

A sequence of estimators $\{\theta_n\}_{n=1}^{\infty}$ of a parameter θ is said to be **consistent** if $\theta_n \to \theta$ in probability $(\theta_n \xrightarrow{p} \theta)$ as $n \to \infty$. (Recall: $\theta_n \xrightarrow{p} \theta$ if for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\theta_n - \theta| \ge \epsilon) = 0.$$

In order to prove that $\hat{\beta}_n$ (estimator with n samples) is consistent, we will make some assumptions on the *data generating model*. (Without any assumptions, nothing prevents the observations to be all the same for example...)

Observations: $y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$.

Observations: $y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Let $\mathbf{x}_i := (x_{i,1}, \dots, x_{i,n}) \in \mathbb{R}^p$ $(i = 1, \dots, n)$.

Observations: $y = (y_i) \in \mathbb{R}^n$, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Let $\mathbf{x}_i := (x_{i,1}, \dots, x_{i,n}) \in \mathbb{R}^p$ $(i = 1, \dots, n)$. We will assume:

•
$$(\mathbf{x}_i)_{i=1}^n$$
 are iid random vectors.

 $y_i = \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} + \epsilon_i \text{ where } \epsilon_i \text{ are iid } N(0,\sigma^2).$

③ The error ϵ_i is independent of \mathbf{x}_i .

• $Ex_{ij}^2 < \infty$ (finite second moment).

 $Q = E(\mathbf{x}_i \mathbf{x}_i^T) \in \mathbb{R}^{p \times p} \text{ is invertible.}$

Observations:
$$y = (y_i) \in \mathbb{R}^n$$
, $X = (x_{ij}) \in \mathbb{R}^{n \times p}$. Let $\mathbf{x}_i := (x_{i,1}, \dots, x_{i,n}) \in \mathbb{R}^p$ $(i = 1, \dots, n)$.
We will assume:

•
$$(\mathbf{x}_i)_{i=1}^n$$
 are iid random vectors.

 $y_i = \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} + \epsilon_i \text{ where } \epsilon_i \text{ are iid } N(0,\sigma^2).$

③ The error ϵ_i is independent of \mathbf{x}_i .

•
$$Ex_{ij}^2 < \infty$$
 (finite second moment).

•
$$Q = E(\mathbf{x}_i \mathbf{x}_i^T) \in \mathbb{R}^{p \times p}$$
 is invertible.

Under these assumptions, we have the following theorem.

Theorem: Let $\hat{\beta}_n = (X^T X)^{-1} X^T y$. Then, under the above assumptions, we have

$$\hat{\beta}_n \xrightarrow{p} \beta$$
.

Recall:

Weak law of large numbers: Let $(X_i)_{i=1}^{\infty}$ be iid random variables with finite first moment $E(|X_i|) < \infty$. Let $\mu := E(X_i)$. Then

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} \mu.$$

Recall:

Weak law of large numbers: Let $(X_i)_{i=1}^{\infty}$ be iid random variables with finite first moment $E(|X_i|) < \infty$. Let $\mu := E(X_i)$. Then

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} \mu.$$

Continuous mapping theorem: Let S, S' be metric spaces. Suppose $(X_i)_{i=1}^{\infty}$ are S-valued random variables such that $X_i \xrightarrow{p} X$. Let $g: S \to S'$. Denote by D_g the set of points in S where g is discontinuous and suppose $P(X \in D_g) = 0$. Then $g(X_n) \xrightarrow{p} g(X)$.

We have

$$\hat{\beta} = (X^T X)^{-1} X^T y = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i y_i\right).$$

We have

$$\hat{\beta} = (X^T X)^{-1} X^T y = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i y_i\right).$$

Using Cauchy-Schwarz,

$$E(|x_{ij}x_{ik}|) \le (E(x_{ij}^2)E(x_{ik}^2))^{1/2} < \infty.$$

We have

$$\hat{\beta} = (X^T X)^{-1} X^T y = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i y_i\right).$$

Using Cauchy-Schwarz,

$$E(|x_{ij}x_{ik}|) \le (E(x_{ij}^2)E(x_{ik}^2))^{1/2} < \infty.$$

In a similar way, we prove that $E(|x_{ij}y_i|) < \infty$.

We have

$$\hat{\beta} = (X^T X)^{-1} X^T y = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i y_i\right).$$

Using Cauchy–Schwarz,

$$E(|x_{ij}x_{ik}|) \le (E(x_{ij}^2)E(x_{ik}^2))^{1/2} < \infty.$$

In a similar way, we prove that $E(|x_{ij}y_i|) < \infty$. By the weak law of large numbers, we obtain

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T \xrightarrow{p} E(\mathbf{x}_i \mathbf{x}_i^T) = Q,$$
$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i y_i \xrightarrow{p} E(\mathbf{x}_i y_i).$$

Using the continuous mapping theorem, we obtain

$$\hat{\beta}_n \xrightarrow{p} E(\mathbf{x}_i \mathbf{x}_i^T)^{-1} E(\mathbf{x}_i y_i).$$

(define $g: \mathbb{R}^{p \times p} \times \mathbb{R}^p \to \mathbb{R}^p$ by $g(A, b) = A^{-1}b$.)

Using the continuous mapping theorem, we obtain

$$\hat{\beta}_n \xrightarrow{p} E(\mathbf{x}_i \mathbf{x}_i^T)^{-1} E(\mathbf{x}_i y_i).$$

(define $g : \mathbb{R}^{p \times p} \times \mathbb{R}^p \to \mathbb{R}^p$ by $g(A, b) = A^{-1}b$.) Recall: $y_i = \mathbf{x}_i^T \beta + \epsilon_i$. So

$$\mathbf{x}_i y_i = \mathbf{x}_i \mathbf{x}_i^T \beta + \mathbf{x}_i \epsilon_i.$$

Using the continuous mapping theorem, we obtain

$$\hat{\beta}_n \xrightarrow{p} E(\mathbf{x}_i \mathbf{x}_i^T)^{-1} E(\mathbf{x}_i y_i).$$

(define $g : \mathbb{R}^{p \times p} \times \mathbb{R}^p \to \mathbb{R}^p$ by $g(A, b) = A^{-1}b$.) Recall: $y_i = \mathbf{x}_i^T \beta + \epsilon_i$. So

$$\mathbf{x}_i y_i = \mathbf{x}_i \mathbf{x}_i^T \beta + \mathbf{x}_i \epsilon_i.$$

Taking expectations,

$$E(\mathbf{x}_i y_i) = E(\mathbf{x}_i \mathbf{x}_i^T)\beta + E(\mathbf{x}_i \epsilon_i).$$

Using the continuous mapping theorem, we obtain

$$\hat{\beta}_n \xrightarrow{p} E(\mathbf{x}_i \mathbf{x}_i^T)^{-1} E(\mathbf{x}_i y_i).$$

(define $g : \mathbb{R}^{p \times p} \times \mathbb{R}^p \to \mathbb{R}^p$ by $g(A, b) = A^{-1}b$.) Recall: $y_i = \mathbf{x}_i^T \beta + \epsilon_i$. So

$$\mathbf{x}_i y_i = \mathbf{x}_i \mathbf{x}_i^T \beta + \mathbf{x}_i \epsilon_i.$$

Taking expectations,

$$E(\mathbf{x}_i y_i) = E(\mathbf{x}_i \mathbf{x}_i^T)\beta + E(\mathbf{x}_i \epsilon_i).$$

Note that $E(\mathbf{x}_i \epsilon_i) = 0$ since \mathbf{x}_i and ϵ_i are independent by assumption.

Using the continuous mapping theorem, we obtain

$$\hat{\beta}_n \xrightarrow{p} E(\mathbf{x}_i \mathbf{x}_i^T)^{-1} E(\mathbf{x}_i y_i).$$

(define $g : \mathbb{R}^{p \times p} \times \mathbb{R}^p \to \mathbb{R}^p$ by $g(A, b) = A^{-1}b$.) Recall: $y_i = \mathbf{x}_i^T \beta + \epsilon_i$. So

$$\mathbf{x}_i y_i = \mathbf{x}_i \mathbf{x}_i^T \beta + \mathbf{x}_i \epsilon_i.$$

Taking expectations,

$$E(\mathbf{x}_i y_i) = E(\mathbf{x}_i \mathbf{x}_i^T)\beta + E(\mathbf{x}_i \epsilon_i).$$

Note that $E(\mathbf{x}_i \epsilon_i) = 0$ since \mathbf{x}_i and ϵ_i are independent by assumption.

We conclude that

$$\beta = E(\mathbf{x}_i \mathbf{x}_i^T)^{-1} E(\mathbf{x}_i y_i)$$

and so $\hat{\beta}_n \xrightarrow{p} \beta$.