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Subset selection

We saw before that the OLS is the best linear unbiased
estimator for β.

However, biased estimators can significantly improve the
performance (e.g. reduce prediction error).

We now explore various approaches that can be used to select an
appropriate subset of variables in a linear regression.

Best subset selection: Given k ∈ {1, . . . , p}, we find the subset
of size k of {1, . . . , p} that minimizes the prediction error.

Note: there are
(
p
k

)
subsets of size k and 2k possible subsets.

So the procedure is only computationally feasible for small
values of p.
The leaps and bounds procedure (Furnival and Wilson, 1974)
makes this feasible for p as large as 30 or 40.
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Best subset selection: cars dataset

Best subset = [’Mileage’,’Liter’,’Doors’,’Cruise’,’Sound’, ’Leather’].
Not included = [’Cylinder’]

Best subset of 4 elements: [’Mileage’,’Liter’,’Cruise’,’Leather’]
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Best subset selection: cars dataset, Chevrolet

Restricting to Chevrolet only:
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Forward- and Backward- stepwise regression

Best subset selection performs well, but is too computationally
intensive to be useful in practice.

Two natural “greedy” variants of the best subset selection
technique:

Forward stepwise regression: starts with the intercept y,
and then sequentially adds into the model the predictor that
most improves the fit.
Backward stepwise regression: starts with the full model,
and sequentially deletes the predictor that has the least impact
on the fit (smallest Z-score or t-score).

Can be used even when the number of variables is very large.
However,

Greedy approach: doesn’t guarantee a global optimum.
Less rigorous than other methods, less supporting theory.

Nevertheless, the stepwise approaches often return predictors
similar to the predictors obtained from more complex methods with
better theory.
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Shrinkage methods

Penalizing the coefficients:
Suppose we want to restrict the number or the size of the
regression coefficients.
Add a penalty (or “price to pay”) for including a nonzero
coefficient.

Examples: Let λ > 0 be a parameter.
1

β̂0 = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

1βi 6=0

)
.

Pay a fixed price λ for including a given variable into the
model.
Variables that do not significantly contribute to reducing the
error are excluded from the model (i.e., βi = 0).
Problem: difficult to solve (combinatorial optimization).
Cannot be solved efficiently for a large number of variables.
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Shrinkage methods (cont.)

Relaxations of the previous approach:
2 Ridge regression/Tikhonov regularization:

β̂ridge = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
.

Shrinks the regression coefficients by imposing a penalty on
their size.
Penalty = λ · ‖β‖22.
Problem equivalent to
β̂ridge = argminβ∈Rp ‖y −Xβ‖22 subject to

∑p
i=1 β

2
i ≤ t.

Penalty is a smooth function.
Easy to solve (solution can be written in closed form).
Generally does not set any coefficient to zero (no model
selection).
Can be used to “regularize” a rank deficient problem (n < p).
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Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive definite, and therefore invertible.
Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:
When λ > 0, the estimator is defined even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous “adding a multiple of the identity” to XTX.

8/15



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive definite, and therefore invertible.
Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:
When λ > 0, the estimator is defined even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous “adding a multiple of the identity” to XTX.

8/15



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive definite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:
When λ > 0, the estimator is defined even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous “adding a multiple of the identity” to XTX.

8/15



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive definite, and therefore invertible.
Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:
When λ > 0, the estimator is defined even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous “adding a multiple of the identity” to XTX.

8/15



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive definite, and therefore invertible.
Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:
When λ > 0, the estimator is defined even when n < p.

When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous “adding a multiple of the identity” to XTX.

8/15



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive definite, and therefore invertible.
Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:
When λ > 0, the estimator is defined even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.

Makes rigorous “adding a multiple of the identity” to XTX.

8/15



Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λ

p∑
i=1

βi

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive definite, and therefore invertible.
Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:
When λ > 0, the estimator is defined even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous “adding a multiple of the identity” to XTX.

8/15



The Lasso

3 The Lasso (Least Absolute Shrinkage and Selection Operator):

β̂lasso = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

|βi|

)
.

Introduced in 1996 by Robert Tibshirani.
Equivalent to β̂lasso = argminβ∈Rp ‖y −Xβ‖22 subject to
‖β‖1 =

∑p
i=1 |βi| ≤ t.

Both sets coefficients to zero (model selection) and shrinks
coefficients.
More “global” approach to selecting variables compared to
previously discussed greedy approaches.
Can be seen as a convex relaxation of the β̂0 problem.
No closed form solution, but can solved efficiently using convex
optimization methods.
Performs well in practice.
Very popular. Active area of research.
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Important model selection property

β̂lasso = argminβ∈Rp ‖y −Xβ‖22
subject to ‖β‖1 =

∑p
i=1 |βi| ≤ t

ESL, Fig. 3.11.

Solutions are the intersection of the ellipses with the ‖ · ‖1 or ‖ · ‖2
balls. Corners of the ‖ · ‖1 have zero coefficients.
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Elastic net

Elastic net (Zou and Hastie, 2005)

β̂e-net argmin
β∈Rp

‖y −Xβ‖22 + λ2‖β‖22 + λ1‖β‖1.

Benefits from both `1 (model selection) and `2 regularization.
Downside: Two parameters to choose instead of one (can
increase the computational burden quite a lot in large
experiments).
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Lab

Scikit-learn has an object to compute Lasso solution.

Note: the package solves a slightly different (but equivalent)
problem than discussed above:

argmin
w∈Rp

1

2n
‖y −Xw‖22 + α‖w‖1.

from sklearn.linear_model import Lasso

clf = linear_model.Lasso(alpha=0.1)
clf.fit(X,y)
print(clf.coef_)
print(clf.intercept_)
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Lab (cont.)

A simple example with simulated data
import numpy as np
from sklearn.linear_model import Lasso
import matplotlib.pyplot as plt
# Generate random data
n = 100
p = 5
X = np.random.randn(n,p)
epsilon = np.random.randn(n,1)
beta = np.random.rand(p)
y = X.dot(beta) + epsilon
alphas = np.arange(0.1,2,0.1) # 0.1 to 2, step = 0.1
N = len(alphas) # Number of lasso parameters
betas = np.zeros((N,p+1)) # p+1 because of intercept
for i in range(N):

clf = Lasso(alphas[i])
clf.fit(X,y)
betas[i,0] = clf.intercept_
betas[i,1:] = clf.coef_

plt.plot(alphas,betas,linewidth=2)
plt.legend(range(p))
plt.xlabel(’alpha’)
plt.ylabel(’Coefficients’)
plt.xlim(min(alphas),max(alphas))
plt.show()
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Lab (cont.)
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Lab (cont.)

Now, let y = X1β1 +X2β2 + ε with ε ∼ N(0, σ2). Can the lasso
detect that the first two variables are the most important?

sigma = 0.1
epsilon = sigma*np.random.randn(n)
y2 = X[:,0] + X[:,1] + epsilon
clf = Lasso(0.1)
clf.fit(X,y2)
np.where(abs(clf.coef_) > 1e-10)

Vary the values of α between 0.1 and 2.
Repeat the previous exercise for larger values of sigma2.

If you have time, use the lasso to identify relevant predictors in
either the cars or the boston dataset.
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