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o We saw before that the OLS is the best linear unbiased
estimator for 3.

@ However, biased estimators can significantly improve the
performance (e.g. reduce prediction error).

We now explore various approaches that can be used to select an
appropriate subset of variables in a linear regression.

Best subset selection: Given k € {1,...,p}, we find the subset
of size k of {1,...,p} that minimizes the prediction error.

o Note: there are (}) subsets of size k and 2" possible subsets.
So the procedure is only computationally feasible for small
values of p.

@ The leaps and bounds procedure (Furnival and Wilson, 1974)
makes this feasible for p as large as 30 or 40.
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Best subset selection: cars dataset

Prediction score for all subsets of predictors for the cars dataset
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Best subset = ['Mileage', Liter’,'Doors’, Cruise’,'Sound’, 'Leather’].
Not included = ['Cylinder’]

Best subset of 4 elements: ['Mileage’,'Liter’,'Cruise’,’Leather’]
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Best subset selection: cars dataset, Chevrolet

Restricting to Chevrolet only:

Prediction score for all subsets of predictors for the cars dataset
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Forward- and Backward- stepwise regression

@ Best subset selection performs well, but is too computationally
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@ Best subset selection performs well, but is too computationally
intensive to be useful in practice.

Two natural “greedy” variants of the best subset selection
technique:

o Forward stepwise regression: starts with the intercept 7,
and then sequentially adds into the model the predictor that
most improves the fit.

o Backward stepwise regression: starts with the full model,
and sequentially deletes the predictor that has the least impact
on the fit (smallest Z-score or t-score).

Can be used even when the number of variables is very large.
However,

@ Greedy approach: doesn't guarantee a global optimum.

@ Less rigorous than other methods, less supporting theory.
Nevertheless, the stepwise approaches often return predictors
similar to the predictors obtained from more complex methods with

better theory.
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Penalizing the coefficients:
@ Suppose we want to restrict the number or the size of the
regression coefficients.
e Add a penalty (or “price to pay”) for including a nonzero
coefficient.
Examples: Let A > 0 be a parameter.

o p
BO — argmin (Hy - Xﬁ”% + )\Z 152.750) .
BERP

i=1

o Pay a fixed price X for including a given variable into the
model.

e Variables that do not significantly contribute to reducing the
error are excluded from the model (i.e., 5; = 0).

o Problem: difficult to solve (combinatorial optimization).
Cannot be solved efficiently for a large number of variables.
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Shrinkage methods (cont.)

Relaxations of the previous approach:

@ Ridge regression/Tikhonov regularization:

p
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Shrinkage methods (cont.)

Relaxations of the previous approach:

@ Ridge regression/Tikhonov regularization:

p
(3198° = argmin (Hy — X85+ AZ@) :
BERP

i=1

o Shrinks the regression coefficients by imposing a penalty on
their size.

o Penalty = X - ||8]|3.

o Problem equivalent to
Bridee = argming,p, ly — X |3 subject to 37_, 52 < t.

o Penalty is a smooth function.

o Easy to solve (solution can be written in closed form).

o Generally does not set any coefficient to zero (no model
selection).

o Can be used to “regularize” a rank deficient problem (n < p).
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aaﬁ <Hy - XPlI3 + A26§> =2(XTXB - XTy) +22) i
i=1 i=1

=2((X"X +AIB - XTy).
Therefore, the critical points satisfy
(XTX + A3 =XTy.
Note: (X7 X + \I) is positive definite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

5ridge — (XTX + )\I>_1XTy.
Remarks:
@ When X > 0, the estimator is defined even when n < p.

@ When A = 0 and n > p, we recover the usual least squares
solution.

@ Makes rigorous “adding a multiple of the identity” to X7 X.
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p
['855° — argmin <Hy — Xﬁ”% + )\Z ’,31|> .
BERP
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o Introduced in 1996 by Robert Tibshirani.

o Equivalent to flasso = argmingep, |y — X 3|3 subject to
18l = 32— 1Bil < t.

e Both sets coefficients to zero (model selection) and shrinks
coefficients.

e More “global” approach to selecting variables compared to
previously discussed greedy approaches.

o Can be seen as a convex relaxation of the 3° problem.

o No closed form solution, but can solved efficiently using convex
optimization methods.

o Performs well in practice.

e Very popular. Active area of research.

9/15



Important model selection property

Blas-so — argmjnﬁekp ||y - Xﬂ”%
subject to |l = >0, || <t

10/15



Important model selection property

Blas-so — argmingem ||y - Xﬂ”%
subject to |l = >0, || <t

~
- |
//‘/\ J
// /4
§ ne
8 e b

L

‘ B, ‘ B,
FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue

areas are the constraint regions |Bi| + |B2| < t and Bf + B3 < t*, respectively,
while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11.
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |B2| < t and Bf + B3 < t*, respectively,
while the red ellipses are the contours of the least squares error function.

ESL, Fig. 3.11.

Solutions are the intersection of the ellipses with the || - |[; or || - ||2
balls. Corners of the || - || have zero coefficients.
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Elastic net

Elastic net (Zou and Hastie, 2005)

Aemet argmin ly — X8 + X218 + M8l
BERP
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Elastic net

Elastic net (Zou and Hastie, 2005)

Aemet argmin ly — X8 + X218 + M8l
BERP

@ Benefits from both ¢; (model selection) and ¢y regularization.

e Downside: Two parameters to choose instead of one (can
increase the computational burden quite a lot in large
experiments).
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Lab

Scikit-learn has an object to compute Lasso solution.
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Lab

Scikit-learn has an object to compute Lasso solution.

Note: the package solves a slightly different (but equivalent)
problem than discussed above:

o1
a%mmgﬂy—XM@+®Wh-
weRP n

from sklearn.linear_model import Lasso

clf = linear_model.Lasso(alpha=0.1)
clf . fit(X,y)

print(clf.coef_)
print(clf.intercept_)
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Lab (cont.)

A simple example with simulated data

import numpy as np

from sklearn.linear_model import Lasso
import matplotlib.pyplot as plt

# Generate random data

n = 100

p
X = np.random.randn(n,p)
epsilon = np.random.randn(n,1)
beta = np.random.rand(p)

y = X.dot(beta) + epsilon

alphas = np.arange(0.1,2,0.1) # 0.1 to 2, step = 0.1
N = len(alphas) # Number of lasso parameters

betas = np.zeros((N,p+1)) # p+l because of intercept

for i in range(N):

clf = Lasso(alphas[i])

clf.fit(X,y)

betas[i1,0] = clf.intercept_

betas[i,1:] = clf.coef_
plt.plot(alphas,betas,linewidth=2)
plt.legend(range(p))
plt.xlabel(’alpha’)
plt.ylabel(’Coefficients’)
plt.xlim(min(alphas) ,max(alphas))
plt.show()
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Lab (cont.)

Now, let y = X131 + X282 + € with e ~ N(0,0?). Can the lasso
detect that the first two variables are the most important?

sigma = 0.1

epsilon = sigma*np.random.randn(n)
y2 = X[:,0] + X[:,1] + epsilon
clf = Lasso(0.1)

clf.fit(X,y2)
np.where(abs(clf.coef_) > 1le-10)

@ Vary the values of o between 0.1 and 2.
@ Repeat the previous exercise for larger values of sigma?2.

If you have time, use the lasso to identify relevant predictors in
either the cars or the boston dataset.
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