MATH 637: Mathematical Techniques in Data Sciences Computing the lasso solution

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 4, 2020

• Lasso if often used in high-dimensional problems.

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
- Recall: the lasso objective

$$||y - X\beta||_2^2 + \alpha ||\beta||_1$$

is NOT differentiable everywhere on \mathbb{R}^p .

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
- Recall: the lasso objective

$$||y - X\beta||_2^2 + \alpha ||\beta||_1$$

is NOT differentiable everywhere on \mathbb{R}^p .

 Many strategies exist for solving minimizing the lasso objective function.

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
- Recall: the lasso objective

$$||y - X\beta||_2^2 + \alpha ||\beta||_1$$

is NOT differentiable everywhere on \mathbb{R}^p .

 Many strategies exist for solving minimizing the lasso objective function.

We will examine the popular **coordinate descent** approach.

Objective: Minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.

Objective: Minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.

Strategy: Minimize each coordinate separately while cycling

through the coordinates.

Objective: Minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.

Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$\begin{split} x_1^{(k+1)} &= \operatorname*{argmin}_x f(x, x_2^{(k)}, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_2^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_3^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, x, x_4^{(k)}, \dots, x_p^{(k)}) \\ &\vdots \\ x_p^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, \dots, x_{p-1}^{(k+1)}, x). \end{split}$$

Objective: Minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.

Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$\begin{split} x_1^{(k+1)} &= \operatorname*{argmin}_x f(x, x_2^{(k)}, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_2^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_3^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, x, x_4^{(k)}, \dots, x_p^{(k)}) \\ &\vdots \\ x_p^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, \dots, x_{p-1}^{(k+1)}, x). \end{split}$$

Neglected technique in the past that gained popularity recently.

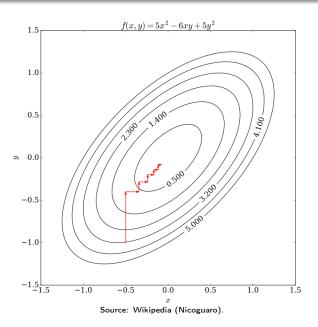
Objective: Minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.

Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$\begin{split} x_1^{(k+1)} &= \operatorname*{argmin}_x f(x, x_2^{(k)}, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_2^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x, x_3^{(k)}, \dots, x_p^{(k)}) \\ x_3^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, x, x_4^{(k)}, \dots, x_p^{(k)}) \\ &\vdots \\ x_p^{(k+1)} &= \operatorname*{argmin}_x f(x_1^{(k+1)}, x_2^{(k+1)}, \dots, x_{p-1}^{(k+1)}, x). \end{split}$$

Neglected technique in the past that gained popularity recently.

Can be very efficient when the coordinate-wise problems are easy to solve (e.g. if they admit a closed-form solution).



Convergence

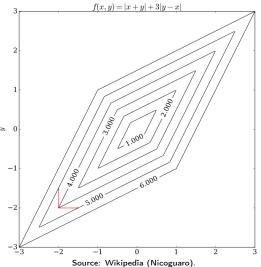
Does this procedure always converge to an extreme point of the objective in general?

Convergence

Does this procedure always converge to an extreme point of the objective in general? **NO!**

Convergence

Does this procedure always converge to an extreme point of the objective in general? **NO!**



Does coordinate descent work for the lasso?

Does coordinate descent work for the lasso? YES!

Does coordinate descent work for the lasso? **YES!** We exploit the fact that the non-differentiable part of the objective is *separable*.

Does coordinate descent work for the lasso? **YES!** We exploit the fact that the non-differentiable part of the objective is *separable*. **Theorem:** (See Tseng, 2001). Suppose

$$f(x_1, \dots, x_p) = f_0(x_1, \dots, x_p) + \sum_{i=1}^p f_i(x_i)$$
 $(f \in \mathbb{R}^p)$

satisfies

- $lackbox{0}\ f_0:\mathbb{R}^p o\mathbb{R}$ is convex and continuously differentiable.
- $f_i: \mathbb{R} \to \mathbb{R}$ is convex $(i=1,\ldots,p)$.
- \bullet f is continuous on X^0 .

Then every limit point of the sequence $(x^{(k)})_{k\geq 1}$ generated by cyclic coordinate descent converges to a global minimum of f.

Lasso: individual step

Choose $1 \le i \le p$. Fix x_j for all $j \ne i$. We optimize over x_i :

$$\min_{x_i} \frac{1}{2} ||y - Ax||_2^2 + \alpha \sum_{k=1}^p |x_k|$$

$$= \min_{x_i} \frac{1}{2} \sum_{l=1}^n \left(y_l - \sum_{m=1}^p a_{lm} x_m \right)^2 + \alpha \sum_{k=1}^p |x_k|.$$

Lasso: individual step

Choose $1 \le i \le p$. Fix x_j for all $j \ne i$. We optimize over x_i :

$$\min_{x_i} \frac{1}{2} \|y - Ax\|_2^2 + \alpha \sum_{k=1}^p |x_k|$$

$$= \min_{x_i} \frac{1}{2} \sum_{l=1}^n \left(y_l - \sum_{m=1}^p a_{lm} x_m \right)^2 + \alpha \sum_{k=1}^p |x_k|.$$

Now,

$$\frac{\partial}{\partial x_i} \frac{1}{2} \sum_{l=1}^n \left(y_l - \sum_{m=1}^p a_{lm} x_m \right)^2 = \sum_{l=1}^n \left(y_l - \sum_{m=1}^p a_{lm} x_m \right) \times (-a_{li})$$

$$= A_i^T (Ax - y)$$

$$= A_i^T (A_{-i} x_{-i} - y) + A_i^T A_i x_i.$$

 $(A_i = i$ -th column of A, $A_{-i} =$ delete i-th column of A)

Lasso: individual step

Choose $1 \le i \le p$. Fix x_j for all $j \ne i$. We optimize over x_i :

$$\min_{x_i} \frac{1}{2} ||y - Ax||_2^2 + \alpha \sum_{k=1}^p |x_k|$$

$$= \min_{x_i} \frac{1}{2} \sum_{l=1}^n \left(y_l - \sum_{m=1}^p a_{lm} x_m \right)^2 + \alpha \sum_{k=1}^p |x_k|.$$

Now,

$$\frac{\partial}{\partial x_i} \frac{1}{2} \sum_{l=1}^n \left(y_l - \sum_{m=1}^p a_{lm} x_m \right)^2 = \sum_{l=1}^n \left(y_l - \sum_{m=1}^p a_{lm} x_m \right) \times (-a_{li})$$

$$= A_i^T (Ax - y)$$

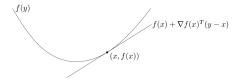
$$= A_i^T (A_{-i} x_{-i} - y) + A_i^T A_i x_i.$$

 $(A_i = i$ -th column of A, $A_{-i} =$ delete i-th column of A) What about the non-differential part?

Digression: subdifferential calculus

Suppose f is convex and differentiable. Then

$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$

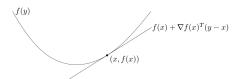


Boyd & Vandenberghe, Figure 3.2.

Digression: subdifferential calculus

Suppose f is convex and differentiable. Then

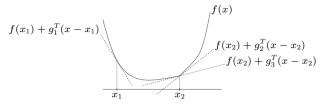
$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$



Boyd & Vandenberghe, Figure 3.2.

We say that g is a **subgradient** of f at x if

$$f(y) \ge f(x) + g^T(y - x) \qquad \forall y.$$



We define

$$\partial f(x) := \{ \text{all subgradients of } f \text{ at } x \}.$$

We define

$$\partial f(x) := \{ \text{all subgradients of } f \text{ at } x \}.$$

• $\partial f(x)$ is a closed convex set (can be empty).

We define

$$\partial f(x) := \{ \text{all subgradients of } f \text{ at } x \}.$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x) = {\nabla f(x)}$ if f is differentiable at x.

We define

$$\partial f(x) := \{ \text{all subgradients of } f \text{ at } x \}.$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x) = {\nabla f(x)}$ if f is differentiable at x.
- If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$.

We define

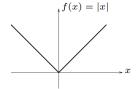
$$\partial f(x) := \{ \text{all subgradients of } f \text{ at } x \}.$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x) = {\nabla f(x)}$ if f is differentiable at x.
- If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$.

Basic properties:

- $\partial(\alpha f) = \alpha \partial f$ if $\alpha > 0$.

Example:



$$\partial f(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1, 1] & \text{if } x = 0 \\ \{1\} & \text{if } x > 0 \end{cases}$$

Recall: If f is convex and differentiable, then

$$f(x^*) = \inf_{x} f(x) \Leftrightarrow 0 = \nabla f(x^*).$$

Recall: If f is convex and differentiable, then

$$f(x^*) = \inf_{x} f(x) \Leftrightarrow 0 = \nabla f(x^*).$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$f(x^*) = \inf_{x} f(x) \Leftrightarrow 0 \in \partial f(x^*).$$

Recall: If f is convex and differentiable, then

$$f(x^*) = \inf_{x} f(x) \Leftrightarrow 0 = \nabla f(x^*).$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$f(x^*) = \inf_x f(x) \Leftrightarrow 0 \in \partial f(x^*).$$

Proof.

$$f(y) \ge f(x^*) + 0 \cdot (y - x^*) \Leftrightarrow 0 \in \partial f(x^*).$$

10/16

Recall: If f is convex and differentiable, then

$$f(x^*) = \inf_{x} f(x) \Leftrightarrow 0 = \nabla f(x^*).$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$f(x^*) = \inf_x f(x) \Leftrightarrow 0 \in \partial f(x^*).$$

Proof.

$$f(y) \ge f(x^*) + 0 \cdot (y - x^*) \Leftrightarrow 0 \in \partial f(x^*).$$

Despite its simplicity, this is a very powerful and important result.

Back to the lasso

The function

$$f(x_i) := \frac{1}{2} \|y - Ax\|_2^2 + \alpha \sum_{k=1}^p |x_k|$$

is convex. Its minimum is obtained if $0 \in \partial f(x^*)$.

Back to the lasso

The function

$$f(x_i) := \frac{1}{2} \|y - Ax\|_2^2 + \alpha \sum_{k=1}^p |x_k|$$

is convex. Its minimum is obtained if $0 \in \partial f(x^*)$.

Let
$$g:=\frac{\partial}{\partial x_i}\|y-Ax\|_2^2=A_i^T(A_{-i}x_{-i}-y)+A_i^TA_ix_i.$$

Then,

$$\partial f(x) = \begin{cases} \{g - \alpha\} & \text{if } x_i < 0 \\ [g - \alpha, g + \alpha] & \text{if } x_i = 0 \\ \{g + \alpha\} & \text{if } x_i > 0 \end{cases}$$

Back to the lasso

The function

$$f(x_i) := \frac{1}{2} \|y - Ax\|_2^2 + \alpha \sum_{k=1}^p |x_k|$$

is convex. Its minimum is obtained if $0 \in \partial f(x^*)$.

Let $g:=\frac{\partial}{\partial x_i}\|y-Ax\|_2^2=A_i^T(A_{-i}x_{-i}-y)+A_i^TA_ix_i.$

Then,

$$\partial f(x) = \begin{cases} \{g - \alpha\} & \text{if } x_i < 0\\ [g - \alpha, g + \alpha] & \text{if } x_i = 0.\\ \{g + \alpha\} & \text{if } x_i > 0 \end{cases}$$

Now,

$$g - \alpha = 0 \Leftrightarrow x_i = \frac{A_i^T(y - A_{-i}x_{-i}) + \alpha}{A_i^T A_i} = g^* + \frac{\alpha}{\|A_i\|_2^2}.$$

Back to the lasso

The function

$$f(x_i) := \frac{1}{2} \|y - Ax\|_2^2 + \alpha \sum_{k=1}^p |x_k|$$

is convex. Its minimum is obtained if $0 \in \partial f(x^*)$.

Let $g := \frac{\partial}{\partial x_i} ||y - Ax||_2^2 = A_i^T (A_{-i} x_{-i} - y) + A_i^T A_i x_i$.

Then,

$$\partial f(x) = \begin{cases} \{g - \alpha\} & \text{if } x_i < 0\\ [g - \alpha, g + \alpha] & \text{if } x_i = 0.\\ \{g + \alpha\} & \text{if } x_i > 0 \end{cases}$$

Now,

$$g - \alpha = 0 \Leftrightarrow x_i = \frac{A_i^T(y - A_{-i}x_{-i}) + \alpha}{A_i^T A_i} = g^* + \frac{\alpha}{\|A_i\|_2^2}.$$

This implies $0 \in \partial f(x^*)$ if $x^* = g^* + \frac{\alpha}{\|A_i\|_2^2} < 0$.

Similarly,

$$g + \alpha = 0 \Leftrightarrow x_i = \frac{A_i^T (y - A_{-i} x_{-i}) - \alpha}{A_i^T A_i} = g^* - \frac{\alpha}{\|A_i\|_2^2}.$$

Similarly,

$$g + \alpha = 0 \Leftrightarrow x_i = \frac{A_i^T (y - A_{-i} x_{-i}) - \alpha}{A_i^T A_i} = g^* - \frac{\alpha}{\|A_i\|_2^2}.$$

Therefore,

$$0 \in \partial f(x^*) \text{ if } x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} > 0.$$

Similarly,

$$g + \alpha = 0 \Leftrightarrow x_i = \frac{A_i^T (y - A_{-i} x_{-i}) - \alpha}{A_i^T A_i} = g^* - \frac{\alpha}{\|A_i\|_2^2}.$$

Therefore,

$$0 \in \partial f(x^*) \text{ if } x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} > 0.$$

We found a (unique) x^* so that $0 \in \partial f(x^*)$ if

$$g^* < -\frac{\alpha}{\|A_i\|_2^2}$$
 or $g^* > \frac{\alpha}{\|A_i\|_2^2}$.

What happens when $-\frac{\alpha}{\|A_i\|_2^2} \leq g^{\star} \leq \frac{\alpha}{\|A_i\|_2^2}$?

We have

$$-\frac{\alpha}{\|A_{i}\|_{2}^{2}} \leq g^{*} \leq \frac{\alpha}{\|A_{i}\|_{2}^{2}} \Leftrightarrow -\frac{\alpha}{\|A_{i}\|_{2}^{2}} \leq \frac{A_{i}^{T}(y - A_{-i}x_{-i})}{A_{i}^{T}A_{i}} \leq \frac{\alpha}{\|A_{i}\|_{2}^{2}}$$
$$\Leftrightarrow -\alpha \leq A_{i}^{T}(y - A_{-i}x_{-i}) \leq \alpha.$$

If $x_i = 0$, then $g = A_i^T(y - A_{-i}x_{-i})$ and so $0 \in [g - \alpha, g + \alpha]$.

We have

$$-\frac{\alpha}{\|A_{i}\|_{2}^{2}} \leq g^{*} \leq \frac{\alpha}{\|A_{i}\|_{2}^{2}} \Leftrightarrow -\frac{\alpha}{\|A_{i}\|_{2}^{2}} \leq \frac{A_{i}^{T}(y - A_{-i}x_{-i})}{A_{i}^{T}A_{i}} \leq \frac{\alpha}{\|A_{i}\|_{2}^{2}}$$
$$\Leftrightarrow -\alpha \leq A_{i}^{T}(y - A_{-i}x_{-i}) \leq \alpha.$$

If $x_i = 0$, then $g = A_i^T(y - A_{-i}x_{-i})$ and so $0 \in [g - \alpha, g + \alpha]$.

We have therefore shown that $0 \in \partial f(x^*)$ if $x^* = 0$ and $-\frac{\alpha}{\|A_i\|_2^2} \le g^* \le \frac{\alpha}{\|A_i\|_2^2}$.

Lasso: summary

We have shown the following:

$$0 \in \partial f(x^*) \text{ if } \begin{cases} x^* = g^* + \frac{\alpha}{\|A_i\|_2^2} & \text{ and } g^* < -\frac{\alpha}{\|A_i\|_2^2} \\ x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} & \text{ and } g^* > \frac{\alpha}{\|A_i\|_2^2} \\ x^* = 0 & \text{ and } -\frac{\alpha}{\|A_i\|_2^2} \le g^* \le \frac{\alpha}{\|A_i\|_2^2}. \end{cases}$$

Lasso: summary

We have shown the following:

$$0 \in \partial f(x^*) \text{ if } \begin{cases} x^* = g^* + \frac{\alpha}{\|A_i\|_2^2} & \text{ and } g^* < -\frac{\alpha}{\|A_i\|_2^2} \\ x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} & \text{ and } g^* > \frac{\alpha}{\|A_i\|_2^2} \\ x^* = 0 & \text{ and } -\frac{\alpha}{\|A_i\|_2^2} \le g^* \le \frac{\alpha}{\|A_i\|_2^2}. \end{cases}$$

Therefore, the minimum of f(x) is obtained at

$$x^* = \begin{cases} g^* + \frac{\alpha}{\|A_i\|_2^2} & \text{if } g^* < -\frac{\alpha}{\|A_i\|_2^2} \\ g^* - \frac{\alpha}{\|A_i\|_2^2} & \text{if } g^* > \frac{\alpha}{\|A_i\|_2^2} \\ 0 & \text{if } -\frac{\alpha}{\|A_i\|_2^2} \le g^* \le \frac{\alpha}{\|A_i\|_2^2}. \end{cases}$$

Lasso: summary

We have shown the following:

$$0 \in \partial f(x^*) \text{ if } \begin{cases} x^* = g^* + \frac{\alpha}{\|A_i\|_2^2} & \text{ and } g^* < -\frac{\alpha}{\|A_i\|_2^2} \\ x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} & \text{ and } g^* > \frac{\alpha}{\|A_i\|_2^2} \\ x^* = 0 & \text{ and } -\frac{\alpha}{\|A_i\|_2^2} \le g^* \le \frac{\alpha}{\|A_i\|_2^2}. \end{cases}$$

Therefore, the minimum of f(x) is obtained at

$$x^{\star} = \begin{cases} g^{\star} + \frac{\alpha}{\|A_i\|_2^2} & \text{if } g^{\star} < -\frac{\alpha}{\|A_i\|_2^2} \\ g^{\star} - \frac{\alpha}{\|A_i\|_2^2} & \text{if } g^{\star} > \frac{\alpha}{\|A_i\|_2^2} \\ 0 & \text{if } -\frac{\alpha}{\|A_i\|_2^2} \le g^{\star} \le \frac{\alpha}{\|A_i\|_2^2}. \end{cases}$$

In other words.

$$x^{\star} = \eta^{S}_{\alpha/\|A_{i}\|_{2}^{2}}(g^{\star}) = \eta^{S}_{\alpha/\|A_{i}\|_{2}^{2}}\left(\frac{A_{i}^{T}(y - A_{-i}x_{-i})}{A_{i}^{T}A_{i}}\right),$$

where η_{ϵ} is the *soft-thresholding* function.

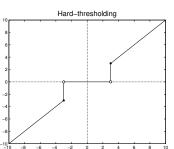
Soft-thresholding

Hard-thresholding:

Soft-thresholding:

 $\eta_{\epsilon}^{S}(x) = \operatorname{sgn}(x)(|x| - \epsilon)_{+}$

$$\eta_{\epsilon}^{H}(x) = x \mathbf{1}_{|x| > \epsilon}.$$



Note: soft-thresholding shrinks the value until it hits zero (and then leaves it at zero).

$$\eta_{\epsilon}^{S}(x) = \begin{cases} x - \epsilon & \text{if } x > \epsilon \\ x + \epsilon & \text{if } x < -\epsilon \\ 0 & \text{if } -\epsilon \le x \le \epsilon \end{cases}.$$

Conclusion

To solve the lasso problem using coordinate descent:

- Pick an initial point x.
- Cycle through the coordinates and perform the updates

$$x_i \to \eta_{\alpha/\|A_i\|_2^2}^S \left(\frac{A_i^T(y - A_{-i}x_{-i})}{A_i^T A_i} \right).$$

• Continue until convergence (i.e., stop when the coordinates vary less than some threshold).

Exercise: Implement this algorithm in Python.