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Predicting categorical variables

So far, we developed methods for modelling quantitative or
continuous outputs.

We will now discuss techniques to model categorical or
discrete outputs.
Examples of problems:

1 You receive an email. Is it spam or not? (binary response).
2 Web browsing analysis: link clicked or not clicked?
3 Handwritten digits recognition (Y ∈ {0, . . . , 9}).

ESL, Figure 1.2.

We begin with two very simple approaches: linear regression
and nearest neighbors.
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Linear regression

We are given X ∈ Rn×2 and Y ∈ {0, 1}n.
Think of yi as xi’s label (red/blue say).

x y
(0.1,0.4) 1
(0.5,0.8) 0
(0.6, 0.2) 1

...
...

We want to predict new points’ category.
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Linear regression (cont.)

First approach: use linear regression as if the output was
continuous.

Fit Y = Xβ + ε (linear decision boundary).
Given x = (x1, x2)

T , use xTβ to predict the label.
Output is in {0, 1}, but xTβ ∈ R.
Use

ŷ =

{
0 if xTβ < 0.5

1 if xTβ ≥ 0.5
.
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Linear regression (cont.)

# X = 2*n by 2, Y = 2*n by 1 {0,1} labels
# Include an intercept
Xp = np.ones((2*n,3))
Xp[:,1:3] = X
# Use regression
beta = np.linalg.lstsq(Xp,Y)[0]
# Our decision boundary is
# beta[0] + beta[1] *x + beta[2]*y = 0.5,
# or y = (0.5-beta[0]-beta[1]*x)/beta[2]
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Test error

As usual, we split our data into train and test sets.
Train model on training set.
Compute classification error on test set.

Xp_train, Xp_test, y_train, y_test =
train_test_split(Xp, Y, test_size=0.25)

beta = np.linalg.lstsq(Xp_train,y_train)[0]
Y_hat = Xp_test.dot(beta)

Test set predicted labels

In general, when
working with k
categories, can use a
loss-function

(L(i, j))ki,j=1,

where L(i, j) = cost
for classifying i as j.
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Nearest neighbors

Nearest neighbors: use closest observations in the training set to
make predictions.

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi.

Here Nk(x) denotes the k-nearest neighbors of x (w.r.t. some
metric, e.g. Euclidean distance).

Use a “majority vote” to determine
final labels

Ĝ(x) =

{
0 if Ŷ (x) < 0.5

1 if Ŷ (x) ≥ 0.5
.

ESL, Fig. 2.2: 15 Nearest Neighbor classifier
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Nearest neighbors

Reducing the number of neighbors leads to:
A smaller training error (training error is 0 when using k = 1
neighbor).
Can use train/test sets to choose k.
Although a small k leads to a small training error, the model
may not generalize well (large test error).

ESL, Fig. 2.3, 1 Nearest classifier
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Example

from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=i)

for i in range(1,N_max+1):
neigh = KNeighborsClassifier(n_neighbors=i)
for j, (train, test) in enumerate(kf):

X_train, X_test, y_train, y_test = X[train], X[test],
Y[train], Y[test]

neigh.fit(X_train,y_train)
scores[i-1,j] = neigh.score(X_test, y_test)
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Linear regression vs Nearest neighbors

A bias-variance tradeoff:
Linear regression:

Relies on the assumption that the decision boundary is linear.
Decision boundary is smooth.

Nearest neighbors:
Adaptive, less assumptions on the data.
A particular decision may depend only on a handful of points.
Less robust.
More wiggly and unstable.

Each method has its own situations for which it works best
Both methods can lead to very good predictions.
Many strategies exist to improve these methods (as we will see
later).
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