MATH 829: Introduction to Data Mining and Analysis
 Introduction to statistical decision theory

Dominique Guillot
Departments of Mathematical Sciences
University of Delaware

March 11, 2020

Review of probability theory

The pmf/pdf of a random variable X :

- $f_{X}(x)=P(X=x)$ (discrete)
- $\int_{A} f_{X}(x) d x=P(X \in A)$ (continuous).

Review of probability theory

The pmf/pdf of a random variable X :

- $f_{X}(x)=P(X=x)$ (discrete)
- $\int_{A} f_{X}(x) d x=P(X \in A)$ (continuous).

Joint pmf/pdf of a random vector (X, Y) :

- $f_{X, Y}(x, y)=P(X=x, Y=y)$ (discrete).
- $\iint_{A} f_{X, Y}(x, y) d x d y=P((X, Y) \in A)$ (continuous).

Review of probability theory

The pmf/pdf of a random variable X :

- $f_{X}(x)=P(X=x)$ (discrete)
- $\int_{A} f_{X}(x) d x=P(X \in A)$ (continuous).

Joint pmf/pdf of a random vector (X, Y) :

- $f_{X, Y}(x, y)=P(X=x, Y=y)$ (discrete).
- $\iint_{A} f_{X, Y}(x, y) d x d y=P((X, Y) \in A)$ (continuous).

Expected value of a random variable:

- $E(X)=\sum_{i=1}^{N} x_{i} \cdot P\left(X=x_{i}\right)$ where $X \in\left\{x_{1}, \ldots, x_{N}\right\}$.
- $E(X)=\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x$.

Review of probability theory

The pmf/pdf of a random variable X :

- $f_{X}(x)=P(X=x)$ (discrete)
- $\int_{A} f_{X}(x) d x=P(X \in A)$ (continuous).

Joint pmf/pdf of a random vector (X, Y) :

- $f_{X, Y}(x, y)=P(X=x, Y=y)$ (discrete).
- $\iint_{A} f_{X, Y}(x, y) d x d y=P((X, Y) \in A)$ (continuous).

Expected value of a random variable:

- $E(X)=\sum_{i=1}^{N} x_{i} \cdot P\left(X=x_{i}\right)$ where $X \in\left\{x_{1}, \ldots, x_{N}\right\}$.
- $E(X)=\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x$.

Expected value of a random vector $X=\left(X_{1}, \ldots, X_{p}\right)$ is $E(X)=\left(E\left(X_{1}\right), E\left(X_{2}\right), \ldots, E\left(X_{p}\right)\right)$.

Review of probability theory (cont.)

Marginal pmf/pdf:

- $f_{X}(x)=\sum_{j} f_{X, Y}\left(x, y_{j}\right)$ (discrete).
- $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$ (continuous).

Review of probability theory (cont.)

Marginal pmf/pdf:

- $f_{X}(x)=\sum_{j} f_{X, Y}\left(x, y_{j}\right)$ (discrete).
- $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$ (continuous).

Conditional probabilities:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { if } P(B) \neq 0
$$

Review of probability theory (cont.)

Marginal pmf/pdf:

- $f_{X}(x)=\sum_{j} f_{X, Y}\left(x, y_{j}\right)$ (discrete).
- $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$ (continuous).

Conditional probabilities:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { if } P(B) \neq 0
$$

Conditional distributions:

- $f_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$ (discrete).
- $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$ (continuous).

Marginal pmf/pdf:

- $f_{X}(x)=\sum_{j} f_{X, Y}\left(x, y_{j}\right)$ (discrete).
- $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$ (continuous).

Conditional probabilities:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { if } P(B) \neq 0
$$

Conditional distributions:

- $f_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$ (discrete).
- $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$ (continuous).

Conditional expectation:

- $E\left(X \mid Y=y_{j}\right)=\sum_{i} x_{i} \cdot P\left(X=x_{i} \mid Y=y_{j}\right)=\sum_{i} x_{i} \cdot f_{X \mid Y}\left(x_{i} \mid y_{j}\right)$.
- $E(X \mid Y=y)=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) d x$.

Review of probability theory (cont.)

Recall: if X is a random variable and $f(\cdot)$ is some function, then $Y=f(X)$ is a new random variable.

Review of probability theory (cont.)

Recall: if X is a random variable and $f(\cdot)$ is some function, then $Y=f(X)$ is a new random variable.

Example. If X is discrete, say $X \in\left\{x_{1}, \ldots, x_{N}\right\}$, then $Y=f(X)$ takes the value $f\left(x_{i}\right)$ with probability $P\left(X=x_{i}\right)$.

Review of probability theory (cont.)

Recall: if X is a random variable and $f(\cdot)$ is some function, then $Y=f(X)$ is a new random variable.

Example. If X is discrete, say $X \in\left\{x_{1}, \ldots, x_{N}\right\}$, then $Y=f(X)$ takes the value $f\left(x_{i}\right)$ with probability $P\left(X=x_{i}\right)$.

Consider $f(y)=E(X \mid Y=y)$. This is a function. We define:

Review of probability theory (cont.)

Recall: if X is a random variable and $f(\cdot)$ is some function, then $Y=f(X)$ is a new random variable.

Example. If X is discrete, say $X \in\left\{x_{1}, \ldots, x_{N}\right\}$, then $Y=f(X)$ takes the value $f\left(x_{i}\right)$ with probability $P\left(X=x_{i}\right)$.

Consider $f(y)=E(X \mid Y=y)$. This is a function. We define:

$$
E(X \mid Y)=f(Y)
$$

This is a random variable.

Review of probability theory (cont.)

Recall: if X is a random variable and $f(\cdot)$ is some function, then $Y=f(X)$ is a new random variable.

Example. If X is discrete, say $X \in\left\{x_{1}, \ldots, x_{N}\right\}$, then $Y=f(X)$ takes the value $f\left(x_{i}\right)$ with probability $P\left(X=x_{i}\right)$.

Consider $f(y)=E(X \mid Y=y)$. This is a function. We define:

$$
E(X \mid Y)=f(Y)
$$

This is a random variable.
Example. If Y is discrete, say $Y \in\left\{y_{1}, \ldots, y_{M}\right\}$, then $E(X \mid Y)$ takes the value $E\left(X \mid Y=y_{i}\right)$ with probability $P\left(Y=y_{i}\right)$.

Review of probability theory (cont.)

Recall: if X is a random variable and $f(\cdot)$ is some function, then $Y=f(X)$ is a new random variable.

Example. If X is discrete, say $X \in\left\{x_{1}, \ldots, x_{N}\right\}$, then $Y=f(X)$ takes the value $f\left(x_{i}\right)$ with probability $P\left(X=x_{i}\right)$.

Consider $f(y)=E(X \mid Y=y)$. This is a function. We define:

$$
E(X \mid Y)=f(Y)
$$

This is a random variable.
Example. If Y is discrete, say $Y \in\left\{y_{1}, \ldots, y_{M}\right\}$, then $E(X \mid Y)$ takes the value $E\left(X \mid Y=y_{i}\right)$ with probability $P\left(Y=y_{i}\right)$.

Theorem. (Iterated expectation theorem) We have

$$
E(X)=E(E(X \mid Y))
$$

Theorem. (Iterated expectation theorem) We have

$$
E(X)=E(E(X \mid Y))
$$

Proof (discrete case). Suppose $X \in\left\{x_{1}, \ldots, x_{N}\right\}$ and $Y \in\left\{y_{1}, \ldots, y_{M}\right\}$. Then

$$
\begin{aligned}
E(E(X \mid Y)) & =\sum_{j=1}^{M 1} E\left(X \mid Y=y_{j}\right) P\left(Y=y_{j}\right) \\
& =\sum_{j=1}^{M} \sum_{i=1}^{N} x_{i} \cdot P\left(X=x_{i} \mid Y=y_{j}\right) P\left(Y=y_{j}\right) \\
& =\sum_{j=1}^{M} \sum_{i=1}^{N} x_{i} \cdot \frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(Y=y_{j}\right)} P\left(Y=y_{j}\right) \\
& =\sum_{j=1}^{M} \sum_{i=1}^{N} x_{i} \cdot P\left(X=x_{i}, Y=y_{j}\right)=\sum_{i=1}^{N} x_{i} \sum_{j=1}^{M} P\left(X=x_{i}, Y=y_{j}\right) \\
& =\sum_{i=1}^{N} x_{i} \cdot P\left(X=x_{i}\right)=E(X) .
\end{aligned}
$$

Statistical decision theory

A framework for developing models. Suppose we want to predict a random variable Y using a random vector X.

Statistical decision theory

A framework for developing models. Suppose we want to predict a random variable Y using a random vector X.

- Let $f_{X, Y}(x, y)$ denote the joint probability distribution of (X, Y).

Statistical decision theory

A framework for developing models. Suppose we want to predict a random variable Y using a random vector X.

- Let $f_{X, Y}(x, y)$ denote the joint probability distribution of (X, Y).
- We want to predict Y using some function $g(X)$.

A framework for developing models. Suppose we want to predict a random variable Y using a random vector X.

- Let $f_{X, Y}(x, y)$ denote the joint probability distribution of (X, Y).
- We want to predict Y using some function $g(X)$.
- We have a loss function $L(Y, f(X))$ to measure how good we are doing, e.g., we used before

$$
L(Y, f(X))=(Y-g(X))^{2}
$$

when we worked with continuous random variables.

Statistical decision theory

A framework for developing models. Suppose we want to predict a random variable Y using a random vector X.

- Let $f_{X, Y}(x, y)$ denote the joint probability distribution of (X, Y).
- We want to predict Y using some function $g(X)$.
- We have a loss function $L(Y, f(X))$ to measure how good we are doing, e.g., we used before

$$
L(Y, f(X))=(Y-g(X))^{2}
$$

when we worked with continuous random variables.

- How do we choose g ? "Optimal" choice?

Statistical decision theory (cont.)

Natural to minimize the expected prediction error:

$$
\operatorname{EPE}(f)=E(L(Y, g(X)))=\int L(y, g(x)) f_{X, Y}(x, y) d x d y
$$

Statistical decision theory (cont.)

Natural to minimize the expected prediction error:

$$
\operatorname{EPE}(f)=E(L(Y, g(X)))=\int L(y, g(x)) f_{X, Y}(x, y) d x d y
$$

For example, if $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}$ have a joint density $f_{X, Y}: \mathbb{R}^{p} \times \mathbb{R} \rightarrow[0, \infty)$ and $L(x, y)=(x, y)^{2}$, then we want to choose g to minimize

$$
\int_{\mathbb{R}^{p} \times \mathbb{R}}(y-g(x))^{2} f_{X, Y}(x, y) d x d y
$$

Statistical decision theory (cont.)

Natural to minimize the expected prediction error:

$$
\operatorname{EPE}(f)=E(L(Y, g(X)))=\int L(y, g(x)) f_{X, Y}(x, y) d x d y
$$

For example, if $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}$ have a joint density
$f_{X, Y}: \mathbb{R}^{p} \times \mathbb{R} \rightarrow[0, \infty)$ and $L(x, y)=(x, y)^{2}$, then we want to choose g to minimize

$$
\int_{\mathbb{R}^{p} \times \mathbb{R}}(y-g(x))^{2} f_{X, Y}(x, y) d x d y
$$

Recall the iterated expectations theorem:

- Let Z_{1}, Z_{2} be random variables.
- Then $h\left(z_{2}\right)=E\left(Z_{1} \mid Z_{2}=z_{2}\right)=$ expected value of Z_{1} w.r.t. the conditional distribution of Z_{1} given $Z_{2}=z_{2}$.
- We define $E\left(Z_{1} \mid Z_{2}\right)=h\left(Z_{2}\right)$.

Now:

$$
E\left(Z_{1}\right)=E\left(E\left(Z_{1} \mid Z_{2}\right)\right)
$$

Statistical decision theory (cont.)

Suppose $L(Y, g(X))=(Y-g(X))^{2}$. Using the iterated expectations theorem:

$$
\begin{aligned}
\operatorname{EPE}(f) & =E\left[E\left[(Y-g(X))^{2} \mid X\right]\right] \\
& =\int E\left[(Y-g(X))^{2} \mid X=x\right] \cdot f_{X}(x) d x
\end{aligned}
$$

Statistical decision theory (cont.)

Suppose $L(Y, g(X))=(Y-g(X))^{2}$. Using the iterated expectations theorem:

$$
\begin{aligned}
\operatorname{EPE}(f) & =E\left[E\left[(Y-g(X))^{2} \mid X\right]\right] \\
& =\int E\left[(Y-g(X))^{2} \mid X=x\right] \cdot f_{X}(x) d x
\end{aligned}
$$

Therefore, to minimize $\operatorname{EPE}(f)$, it suffices to choose

$$
g(x):=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E\left[(Y-c)^{2} \mid X=x\right] .
$$

Statistical decision theory (cont.)

Suppose $L(Y, g(X))=(Y-g(X))^{2}$. Using the iterated expectations theorem:

$$
\begin{aligned}
\operatorname{EPE}(f) & =E\left[E\left[(Y-g(X))^{2} \mid X\right]\right] \\
& =\int E\left[(Y-g(X))^{2} \mid X=x\right] \cdot f_{X}(x) d x
\end{aligned}
$$

Therefore, to minimize $\operatorname{EPE}(f)$, it suffices to choose

$$
g(x):=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E\left[(Y-c)^{2} \mid X=x\right] .
$$

Expanding:

$$
E\left[(Y-c)^{2} \mid X=x\right]=E\left(Y^{2} \mid X=x\right)-2 c \cdot E(Y \mid X=x)+c^{2}
$$

Statistical decision theory (cont.)

Suppose $L(Y, g(X))=(Y-g(X))^{2}$. Using the iterated expectations theorem:

$$
\begin{aligned}
\operatorname{EPE}(f) & =E\left[E\left[(Y-g(X))^{2} \mid X\right]\right] \\
& =\int E\left[(Y-g(X))^{2} \mid X=x\right] \cdot f_{X}(x) d x
\end{aligned}
$$

Therefore, to minimize $\operatorname{EPE}(f)$, it suffices to choose

$$
g(x):=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E\left[(Y-c)^{2} \mid X=x\right] .
$$

Expanding:

$$
E\left[(Y-c)^{2} \mid X=x\right]=E\left(Y^{2} \mid X=x\right)-2 c \cdot E(Y \mid X=x)+c^{2}
$$

The solution is

$$
g(x)=E(Y \mid X=x)
$$

Statistical decision theory (cont.)

Suppose $L(Y, g(X))=(Y-g(X))^{2}$. Using the iterated expectations theorem:

$$
\begin{aligned}
\operatorname{EPE}(f) & =E\left[E\left[(Y-g(X))^{2} \mid X\right]\right] \\
& =\int E\left[(Y-g(X))^{2} \mid X=x\right] \cdot f_{X}(x) d x
\end{aligned}
$$

Therefore, to minimize $\operatorname{EPE}(f)$, it suffices to choose

$$
g(x):=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E\left[(Y-c)^{2} \mid X=x\right] .
$$

Expanding:

$$
E\left[(Y-c)^{2} \mid X=x\right]=E\left(Y^{2} \mid X=x\right)-2 c \cdot E(Y \mid X=x)+c^{2}
$$

The solution is

$$
g(x)=E(Y \mid X=x)
$$

Best prediction: average given $X=x$.

Other loss functions

We saw that
$g(x):=\operatorname{argmin}_{c \in \mathbb{R}} E\left[(Y-c)^{2} \mid X=x\right]=E(Y \mid X=x)$.

Other loss functions

We saw that
$g(x):=\operatorname{argmin}_{c \in \mathbb{R}} E\left[(Y-c)^{2} \mid X=x\right]=E(Y \mid X=x)$.

- Suppose instead we work with $L(Y, g(X))=|Y-g(X)|$.

Other loss functions

We saw that
$g(x):=\operatorname{argmin}_{c \in \mathbb{R}} E\left[(Y-c)^{2} \mid X=x\right]=E(Y \mid X=x)$.

- Suppose instead we work with $L(Y, g(X))=|Y-g(X)|$.
- Applying the same argument, we obtain

$$
g(x)=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E[|Y-c| \mid X=x] .
$$

Other loss functions

We saw that
$g(x):=\operatorname{argmin}_{c \in \mathbb{R}} E\left[(Y-c)^{2} \mid X=x\right]=E(Y \mid X=x)$.

- Suppose instead we work with $L(Y, g(X))=|Y-g(X)|$.
- Applying the same argument, we obtain

$$
g(x)=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E[|Y-c| \mid X=x] .
$$

Problem: If X has density f_{X}, what is the min of $E(|X-c|)$ over c ?

Other loss functions

We saw that
$g(x):=\operatorname{argmin}_{c \in \mathbb{R}} E\left[(Y-c)^{2} \mid X=x\right]=E(Y \mid X=x)$.

- Suppose instead we work with $L(Y, g(X))=|Y-g(X)|$.
- Applying the same argument, we obtain

$$
g(x)=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E[|Y-c| \mid X=x] .
$$

Problem: If X has density f_{X}, what is the min of $E(|X-c|)$ over c ?

$$
\begin{aligned}
E(|X-c|) & =\int|x-c| f_{X}(x) d x \\
& =\int_{-\infty}^{c}(c-x) f_{X}(x) d x+\int_{c}^{\infty}(x-c) f_{X}(x) d x
\end{aligned}
$$

Other loss functions

We saw that
$g(x):=\operatorname{argmin}_{c \in \mathbb{R}} E\left[(Y-c)^{2} \mid X=x\right]=E(Y \mid X=x)$.

- Suppose instead we work with $L(Y, g(X))=|Y-g(X)|$.
- Applying the same argument, we obtain

$$
g(x)=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E[|Y-c| \mid X=x] .
$$

Problem: If X has density f_{X}, what is the min of $E(|X-c|)$ over c ?

$$
\begin{aligned}
E(|X-c|) & =\int|x-c| f_{X}(x) d x \\
& =\int_{-\infty}^{c}(c-x) f_{X}(x) d x+\int_{c}^{\infty}(x-c) f_{X}(x) d x
\end{aligned}
$$

Now, differentiate

$$
\frac{d}{d c} E(|X-c|)=\frac{d}{d c} \int_{-\infty}^{c}(c-x) f_{X}(x) d x+\frac{d}{d c} \int_{c}^{\infty}(x-c) f_{X}(x) d x
$$

Other loss functions (cont.)

Recall:

$$
\frac{d}{d x} \int_{a}^{x} h(t) d t=h(x)
$$

Here, we have

$$
\begin{aligned}
& \frac{d}{d c} c \int_{-\infty}^{c} f_{X}(x) d x-\int_{-\infty}^{c} x f_{X}(x) d x+\frac{d}{d c} \int_{c}^{\infty} x f_{X}(x) d x-c \int_{c}^{\infty} f_{X}(x) d x \\
& =\int_{-\infty}^{c} f_{X}(x) d x-\int_{c}^{\infty} f_{X}(x) d x
\end{aligned}
$$

Check! (Use product rule and $\int_{c}^{\infty}=\int_{-\infty}^{\infty}-\int_{-\infty}^{c}$.)

Other loss functions (cont.)

Recall:

$$
\frac{d}{d x} \int_{a}^{x} h(t) d t=h(x)
$$

Here, we have

$$
\begin{aligned}
& \frac{d}{d c} c \int_{-\infty}^{c} f_{X}(x) d x-\int_{-\infty}^{c} x f_{X}(x) d x+\frac{d}{d c} \int_{c}^{\infty} x f_{X}(x) d x-c \int_{c}^{\infty} f_{X}(x) d x \\
& =\int_{-\infty}^{c} f_{X}(x) d x-\int_{c}^{\infty} f_{X}(x) d x
\end{aligned}
$$

Check! (Use product rule and $\int_{c}^{\infty}=\int_{-\infty}^{\infty}-\int_{-\infty}^{c}$.)
Conclusion: $\frac{d}{d c} E(|X-c|)=0$ iff c is such that $F_{X}(c)=1 / 2$. So the minimum of obtained when $c=\operatorname{median}(X)$.

Other loss functions (cont.)

Recall:

$$
\frac{d}{d x} \int_{a}^{x} h(t) d t=h(x) .
$$

Here, we have

$$
\begin{aligned}
& \frac{d}{d c} c \int_{-\infty}^{c} f_{X}(x) d x-\int_{-\infty}^{c} x f_{X}(x) d x+\frac{d}{d c} \int_{c}^{\infty} x f_{X}(x) d x-c \int_{c}^{\infty} f_{X}(x) d x \\
& =\int_{-\infty}^{c} f_{X}(x) d x-\int_{c}^{\infty} f_{X}(x) d x
\end{aligned}
$$

Check! (Use product rule and $\int_{c}^{\infty}=\int_{-\infty}^{\infty}-\int_{-\infty}^{c}$.)
Conclusion: $\frac{d}{d c} E(|X-c|)=0$ iff c is such that $F_{X}(c)=1 / 2$. So the minimum of obtained when $c=\operatorname{median}(X)$.

Going back to our problem:

$$
g(x)=\underset{c \in \mathbb{R}}{\operatorname{argmin}} E[|Y-c| \mid X=x]=\operatorname{median}(Y \mid X=x) .
$$

Back to nearest neighbors

We saw that $E(Y \mid X=x)$ minimize the expected loss with the loss is the squared error.

Back to nearest neighbors

We saw that $E(Y \mid X=x)$ minimize the expected loss with the loss is the squared error.

- In practice, we don't know the joint distribution of X and Y.

Back to nearest neighbors

We saw that $E(Y \mid X=x)$ minimize the expected loss with the loss is the squared error.

- In practice, we don't know the joint distribution of X and Y.
- The nearest neighbors can be seen as an attempt to approximate $E(Y \mid X=x)$ by
(1) Approximating the expected value by averaging sample data.
(2) Replacing " $\mid X=x$ " by " $\mid X \approx x$ " (since there is generally no or only a few samples where $X=x$).

Back to nearest neighbors

We saw that $E(Y \mid X=x)$ minimize the expected loss with the loss is the squared error.

- In practice, we don't know the joint distribution of X and Y.
- The nearest neighbors can be seen as an attempt to approximate $E(Y \mid X=x)$ by
(1) Approximating the expected value by averaging sample data.
(2) Replacing " $\mid X=x$ " by " $\mid X \approx x$ " (since there is generally no or only a few samples where $X=x$).
There is thus strong theoretical motivations for working with nearest neighbors.

Back to nearest neighbors

We saw that $E(Y \mid X=x)$ minimize the expected loss with the loss is the squared error.

- In practice, we don't know the joint distribution of X and Y.
- The nearest neighbors can be seen as an attempt to approximate $E(Y \mid X=x)$ by
(1) Approximating the expected value by averaging sample data.
(2) Replacing " $\mid X=x$ " by " $\mid X \approx x$ " (since there is generally no or only a few samples where $X=x$).
There is thus strong theoretical motivations for working with nearest neighbors.

Note: If one is interested to control the absolute error, then one could compute the median of the neighbors instead of the mean.

