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Joint pmf/pdf of a random vector (X,Y):
o fxy(z,y) =P(X =z,Y =y) (discrete).
o [[,fxy(x,y)dedy=P((X,Y) € A) (continuous).
Expected value of a random variable:
o E(X) =N ;- P(X = ;) where X € {z1,...,zxn}.
o E(X)=[% =z fx(x) dz.
Expected value of a random vector X = (X1,...,X,) is
E(X) = (BE(X1), E(Xy), ..., BE(Xp)).
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Review of probability theory (cont.)
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Review of probability theory (cont.)

Marginal pmf/pdf:
o fx(z) =72 fxy(x,y;) (discrete).
° fx(z)= ffooo fxy(x,y) dy (continuous).
Conditional probabilities:
P(ANB)
P(B)

P(A|B) = if P(B) #0.
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Marginal pmf/pdf:
° fx(x )— >, fxy(x,y;) (discrete).

o fx(z)= [ fxy(z,y) dy (continuous).
Condltlonal probabilities:

P(ANB)

PAIB) = =55

if P(B) # 0.

Conditional distributions:
° fxy(zly) =P(X =2y =y) = fxyi(x)y) (discrete).

Iy (y
o fxy(zly) = fxfii((yx)y) (continuous).

Conditional expectation:
@ BE(X|Y =y;) =27  P(X =x]Y = y;5) = >, @i - [x)v(wily;).
° B(XY =y)= [Tz fxy(zly) dz.
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Review of probability theory (cont.)

Recall: if X is a random variable and f(-) is some function, then
Y = f(X) is a new random variable.
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Review of probability theory (cont.)

Recall: if X is a random variable and f(-) is some function, then
Y = f(X) is a new random variable.

Example. If X is discrete, say X € {z1,...,2n}, then Y = f(X)
takes the value f(x;) with probability P(X = x;).

Consider f(y) = E(X|Y =y). This is a function. We define:
EXY) = f(Y).

This is a random variable.

Example. If Y is discrete, say Y € {y1,...,ynm}, then E(X]Y)
takes the value E(X|Y = y;) with probability P(Y = y;).
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Review of probability theory (cont.)

Recall: if X is a random variable and f(-) is some function, then
Y = f(X) is a new random variable.

Example. If X is discrete, say X € {z1,...,zn}, then Y = f(X)
takes the value f(x;) with probability P(X = x;).

Consider f(y) = E(X|Y =y). This is a function. We define:
EXY) = f(Y).
This is a random variable.

Example. If Y is discrete, say Y € {y1,...,ynm}, then E(X]Y)
takes the value E(X|Y = y;) with probability P(Y = y;).

Theorem. (Iterated expectation theorem) We have

E(X) = E(E(X|Y)).
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Review of probability theory (cont.)

Theorem. (Iterated expectation theorem) We have
E(X)=E(E(X|Y)).

Proof (discrete case). Suppose X € {z1,...,zn} and
Y € {yl, ce 7%7\/[} Then
E(E(X|Y)) =Y EX[Y =y;))P(Y =y;)

j=1

M N
ZZZ%"P(X =x|Y = y;)P(Y = y;)

s P(X =z,Y =y
=2 2w (P(Y:yj)y)P(Y:yj)
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Statistical decision theory

A framework for developing models. Suppose we want to
predict a random variable Y using a random vector X.
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Statistical decision theory

A framework for developing models. Suppose we want to
predict a random variable Y using a random vector X.

o Let fxy(x,y) denote the joint probability distribution of
(X,Y).
e We want to predict Y using some function g(X).

e We have a loss function L(Y, f(X)) to measure how good we
are doing, e.g., we used before

LY, f(X)) = (Y = g(X))~.

when we worked with continuous random variables.

@ How do we choose ¢g? “Optimal” choice?
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Statistical decision theory (cont.)

Natural to minimize the expected prediction error:

EPE(/) = B(L(Y, (X)) = / Ly, 9(2)) fxy (,y) dudy.
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Statistical decision theory (cont.)

Natural to minimize the expected prediction error:

EPE(f) = E(L(Y,9(X))) = [ L(y.9(a)) Sy (,0) dady.
For example, if X € RP and Y € R have a joint density

fxy :RP xR —[0,00) and L(z,y) = (x,y)? then we want to
choose g to minimize

/ (v — 9(@))2 Fy (2,y) dody.
RP xR
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Statistical decision theory (cont.)

Natural to minimize the expected prediction error:

EPE(f) = E(L(Y, (X)) = / Ly, 9(@)) fxy (2 ) dady.

For example, if X € RP and Y € R have a joint density
fxy :RP xR —[0,00) and L(z,y) = (x,y)? then we want to
choose g to minimize

/ (v — 9(@))2 Fy (2,y) dody.
RP xR

Recall the iterated expectations theorem:
o Let Z1, Z5 be random variables.
@ Then h(zy) = E(Z1|Z2 = z2) = expected value of Z;
w.r.t. the conditional distribution of Z; given Zy = 2.
o We define E(Z1|Z2) = h(Z3).
Now:
E(Z) = E(E(Z1]Z2)) -
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Statistical decision theory (cont.)

Suppose L(Y, g(X)) = (Y — g(X))2. Using the iterated
expectations theorem:

EPE(f) = E [E[(Y — g(X))*|X]]
/E (Y = g(X))*|X = a] - fx(z) dz
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Statistical decision theory (cont.)

Suppose L(Y, g(X)) = (Y — g(X))2. Using the iterated
expectations theorem:

EPE(f) = E [E[(Y — g(X ))QIX]]
— [ BUY = g(OPIX =) - x(o) o
Therefore, to minimize EPE(f), it suffices to choose

g(x) := argmin E[(Y — ¢)?|X = z].
ceR
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Statistical decision theory (cont.)

Suppose L(Y, g(X)) = (Y — g(X))2. Using the iterated
expectations theorem:

EPE(f) = E [E[(Y — g(X ))QIX]]
/E (Y = g(X))*|X = a] - fx(z) dz

Therefore, to minimize EPE(f), it suffices to choose

g(x) := argmin E[(Y — ¢)?|X = z].
ceR

Expanding:
E[(Y —¢)?|X =2]=E(Y?X =) —2¢- B(Y|X =) + ¢~
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Statistical decision theory (cont.)

Suppose L(Y, g(X)) = (Y — g(X))2. Using the iterated
expectations theorem:

EPE(f) = E [E[(Y — g(X ))QIX]]
/E (Y = g(X))*|X = a] - fx(z) dz

Therefore, to minimize EPE(f), it suffices to choose

g(x) := argmin E[(Y — ¢)?|X = z].
ceR

Expanding:
E[(Y —¢)?|X =2]=E(Y?X =) —2¢- B(Y|X =) + ¢~

The solution is
g(z) = E(Y|X = z).

Best prediction: average given X = x.
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Other loss functions

We saw that
g(x) := argmin, g E[(Y — ¢)}|X = 2] = E(Y|X =z).
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g(x) = argmin E[|Y — | ‘ X =z].
ceR

Problem: If X has density fx, what is the min of E(|X — ¢|) over
c?

B(X —c) = [ o~ el fx(a) da
—/_C (c—x) fX(x)dx—i—/oo(x—c) fx(x)dx.
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Other loss functions

We saw that

g(x) := argmin, g E[(Y — ¢)}|X = 2] = E(Y|X =z).

@ Suppose instead we work with L(Y, g(X)) = |Y — g(X)|.
@ Applying the same argument, we obtain

g(x) = argmin E[|Y — | ‘ X =z].
ceR

Problem: If X has density fx, what is the min of E(|X — ¢|) over
c?

B(X —c) = [ o~ el fx(a) da
= [ - sx@ant [T @0 fx@a

— 0
Now, differentiate

GBI =)= 1 [ (=0 fx@dos . [T e-0) fxwits

—0o0
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Other loss functions (cont.)

Recall:
— h(t) dt = h(zx).

Here, we have
o[ axtote= [ aps@ars I [Cats@doc [ px@s
= /C fx(x)dx — /00 fx(z)dx.

Check! (Use product rule and [ = [* —[° )

—0o0
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Other loss functions (cont.)

Recall: P
— h(t) dt = h(zx).

dx J,

Here, we have
o[ axtote= [ aps@ars I [Cats@doc [ px@s
= /C fx(x)dx — /OO fx(z)dx.

Check! (Use product rule and [ = [* —[° )

Conclusion: £ E(|X — ¢|) = 0 iff ¢ is such that Fiy(c) = 1/2. So

the minimum of obtained when ¢ = median(X).
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Other loss functions (cont.)

Recall: P
— h(t) dt = h(zx).

dx J,

Here, we have
o[ axtote= [ aps@ars I [Cats@doc [ px@s
= /C fx(x)dx — /OO fx(z)dx.

Check! (Use product rule and [ = [* —[° )

Conclusion: £ E(|X — ¢|) = 0 iff ¢ is such that Fiy(c) = 1/2. So

the minimum of obtained when ¢ = median(X).

Going back to our problem:

g(x) = argmin E[|Y — | ‘ X = z] = median(Y'| X = x).
ceR
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Back to nearest neighbors

We saw that E(Y|X = z) minimize the expected loss with the loss
is the squared error.
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Back to nearest neighbors

We saw that E(Y|X = z) minimize the expected loss with the loss
is the squared error.

@ In practice, we don't know the joint distribution of X and Y.
@ The nearest neighbors can be seen as an attempt to approximate

EY|X =x) by
@ Approximating the expected value by averaging sample data.

@ Replacing “|X = 2" by “|X ~ z" (since there is generally no
or only a few samples where X = z).

There is thus strong theoretical motivations for working with
nearest neighbors.

Note: If one is interested to control the absolute error, then one
could compute the median of the neighbors instead of the mean.
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