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Review of probability theory

The pmf/pdf of a random variable X:
fX(x) = P (X = x) (discrete)∫
A fX(x) dx = P (X ∈ A) (continuous).

Joint pmf/pdf of a random vector (X,Y ):
fX,Y (x, y) = P (X = x, Y = y) (discrete).∫∫

A fX,Y (x, y) dxdy = P ((X,Y ) ∈ A) (continuous).
Expected value of a random variable:

E(X) =
∑N

i=1 xi · P (X = xi) where X ∈ {x1, . . . , xN}.
E(X) =

∫∞
−∞ x · fX(x) dx.

Expected value of a random vector X = (X1, . . . , Xp) is
E(X) = (E(X1), E(X2), . . . , E(Xp)).
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Review of probability theory (cont.)

Marginal pmf/pdf:
fX(x) =

∑
j fX,Y (x, yj) (discrete).

fX(x) =
∫∞
−∞ fX,Y (x, y) dy (continuous).

Conditional probabilities:

P (A|B) =
P (A ∩B)

P (B)
if P (B) 6= 0.

Conditional distributions:
fX|Y (x|y) = P (X = x|Y = y) =

fX,Y (x,y)
fY (y) (discrete).

fX|Y (x|y) =
fX,Y (x,y)
fY (y) (continuous).

Conditional expectation:

E(X|Y = yj) =
∑

i xi · P (X = xi|Y = yj) =
∑

i xi · fX|Y (xi|yj).

E(X|Y = y) =
∫∞
−∞ x · fX|Y (x|y) dx.
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Review of probability theory (cont.)

Recall: if X is a random variable and f(·) is some function, then
Y = f(X) is a new random variable.

Example. If X is discrete, say X ∈ {x1, . . . , xN}, then Y = f(X)
takes the value f(xi) with probability P (X = xi).

Consider f(y) = E(X|Y = y). This is a function. We define:

E(X|Y ) = f(Y ).

This is a random variable.

Example. If Y is discrete, say Y ∈ {y1, . . . , yM}, then E(X|Y )
takes the value E(X|Y = yi) with probability P (Y = yi).

Theorem. (Iterated expectation theorem) We have

E(X) = E (E(X|Y )) .
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Review of probability theory (cont.)

Theorem. (Iterated expectation theorem) We have

E(X) = E (E(X|Y )) .

Proof (discrete case). Suppose X ∈ {x1, . . . , xN} and
Y ∈ {y1, . . . , yM}. Then
E(E(X|Y )) =

M∑
j=1

E(X|Y = yj)P (Y = yj)

=
M∑
j=1

N∑
i=1

xi · P (X = xi|Y = yj)P (Y = yj)

=

M∑
j=1

N∑
i=1

xi ·
P (X = xi, Y = yj)

P (Y = yj)
P (Y = yj)

=

M∑
j=1

N∑
i=1

xi · P (X = xi, Y = yj) =

N∑
i=1

xi

M∑
j=1

P (X = xi, Y = yj)

=

N∑
i=1

xi · P (X = xi) = E(X).
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Statistical decision theory

A framework for developing models. Suppose we want to
predict a random variable Y using a random vector X.

Let fX,Y (x, y) denote the joint probability distribution of
(X,Y ).
We want to predict Y using some function g(X).
We have a loss function L(Y, f(X)) to measure how good we
are doing, e.g., we used before

L(Y, f(X)) = (Y − g(X))2.

when we worked with continuous random variables.
How do we choose g? “Optimal” choice?
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Statistical decision theory (cont.)

Natural to minimize the expected prediction error:

EPE(f) = E(L(Y, g(X))) =

∫
L(y, g(x))fX,Y (x, y) dxdy.

For example, if X ∈ Rp and Y ∈ R have a joint density
fX,Y : Rp × R→ [0,∞) and L(x, y) = (x, y)2, then we want to
choose g to minimize∫

Rp×R
(y − g(x))2fX,Y (x, y) dxdy.

Recall the iterated expectations theorem:
Let Z1, Z2 be random variables.
Then h(z2) = E(Z1|Z2 = z2) = expected value of Z1

w.r.t. the conditional distribution of Z1 given Z2 = z2.
We define E(Z1|Z2) = h(Z2).

Now:
E(Z1) = E (E(Z1|Z2)) .
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Statistical decision theory (cont.)

Suppose L(Y, g(X)) = (Y − g(X))2. Using the iterated
expectations theorem:

EPE(f) = E
[
E[(Y − g(X))2|X]

]
=

∫
E[(Y − g(X))2|X = x] · fX(x) dx.

Therefore, to minimize EPE(f), it suffices to choose

g(x) := argmin
c∈R

E[(Y − c)2|X = x].

Expanding:

E[(Y − c)2|X = x] = E(Y 2|X = x)− 2c · E(Y |X = x) + c2.

The solution is
g(x) = E(Y |X = x).

Best prediction: average given X = x.
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Other loss functions

We saw that
g(x) := argminc∈RE[(Y − c)2|X = x] = E(Y |X = x).

Suppose instead we work with L(Y, g(X)) = |Y − g(X)|.
Applying the same argument, we obtain

g(x) = argmin
c∈R

E[|Y − c| | X = x].

Problem: If X has density fX , what is the min of E(|X − c|) over
c?

E(|X − c|) =
∫
|x− c| fX(x) dx

=

∫ c

−∞
(c− x) fX(x)dx+

∫ ∞
c

(x− c) fX(x)dx.

Now, differentiate

d

dc
E(|X−c|) = d

dc

∫ c

−∞
(c−x) fX(x)dx+

d

dc

∫ ∞
c

(x−c) fX(x)dx
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∫
|x− c| fX(x) dx

=

∫ c

−∞
(c− x) fX(x)dx+

∫ ∞
c

(x− c) fX(x)dx.

Now, differentiate

d

dc
E(|X−c|) = d

dc

∫ c

−∞
(c−x) fX(x)dx+

d

dc

∫ ∞
c

(x−c) fX(x)dx
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Other loss functions (cont.)

Recall:
d

dx

∫ x

a
h(t) dt = h(x).

Here, we have

d

dc
c

∫ c

−∞
fX(x)dx−

∫ c

−∞
xfX(x)dx+

d

dc

∫ ∞
c

xfX(x)dx− c

∫ ∞
c

fX(x)dx

=

∫ c

−∞
fX(x)dx−

∫ ∞
c

fX(x)dx.

Check! (Use product rule and
∫∞
c =

∫∞
−∞−

∫ c
−∞.)

Conclusion: d
dcE(|X − c|) = 0 iff c is such that FX(c) = 1/2. So

the minimum of obtained when c = median(X).

Going back to our problem:

g(x) = argmin
c∈R

E[|Y − c| | X = x] = median(Y |X = x).
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Back to nearest neighbors

We saw that E(Y |X = x) minimize the expected loss with the loss
is the squared error.

In practice, we don’t know the joint distribution of X and Y .
The nearest neighbors can be seen as an attempt to approximate

E(Y |X = x) by
1 Approximating the expected value by averaging sample data.
2 Replacing “|X = x” by “|X ≈ x” (since there is generally no

or only a few samples where X = x).
There is thus strong theoretical motivations for working with
nearest neighbors.

Note: If one is interested to control the absolute error, then one
could compute the median of the neighbors instead of the mean.
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