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Announcements

All classes will be on Zoom until the end of the semester.
Our assessment plan remains the same.
Please submit HW2 as soon as possible if you haven’t done so
already.
We may have a (Zoom) guest lecture next week (to be
confirmed).
Please start thinking about what you would like to do for your
project. More details soon.
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Logistic regression

Suppose we work with binary outputs, i.e., yi ∈ {0, 1}.
Linear regression may not be the best model.

xTβ ∈ R not in {0, 1}.
Linearity may not be appropriate. Does doubling the predictor
doubles the probability of Y = 1? (e.g. probability of going to
the beach vs outdoors temperature).

Logistic regression: Different perspective. Instead of modelling
the {0, 1} output, we model the probability that Y = 0, 1.
Idea: We model P (Y = 1|X = x).

Now: P (Y = 1|X = x) ∈ [0, 1] instead of {0, 1}.
We want to relate that probability to xTβ.
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Logistic regression (cont.)

We assume,

P (Y = 1|X = x) =
ex

T β

1 + exT β

P (Y = 0|X = x) = 1− P (Y = 1|X = x) =
1

1 + exT β

The function f(x) = ex/(1 + ex) = 1/(1 + e−x) is called the
logistic function (or sigmoid function).

Larger positive values of xTβ ⇒ p ≈ 1.
Larger negative values of xTβ ⇒ p ≈ 0.
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Log odds

We have P (Y = 1|X = x) = f(xTβ) = ex
T β

1+exT β
.

Define the logit function by logit(y) = log
(

y
1−y

)
. Then

logit(P (Y = 1|X = x)) = log
P (Y = 1|X = x)

1− P (Y = 1|X = x)
= xTβ.

Hence, we are looking for a model for the “odds ratio”:

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= log

P (Y = 1|X = x)

1− P (Y = 1|X = x)
= xTβ.

The ratio
P (Y = 1|X = x)

P (Y = 0|X = x)

is called the odds ratio.
Notice we are assuming Y |X = x ∼ Bernoulli(p). Hence,

E(Y |X = x) = p.
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Logistic regression (cont.)

In summary, we are assuming:
Y |X = x ∼ Bernoulli(p).
logit(p) = logit(E(Y |X = x)) = xTβ.

More generally, one can use a generalized linear model (GLM). A
GLM consists of:

A probability distribution for Y |X = x from the exponential
family.
A linear predictor η = xTβ.
A link function g such that g(E(Y |X = x)) = η.
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Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y . We typically
estimate the parameter β using maximum likelihood.

Recall: If Y ∼ Bernoulli(p), then

P (Y = y) = py(1− p)1−y, y ∈ {0, 1}.
If Y1, . . . , Yn ∼ Bernoulli(p) are iid observations, then

L(p) = P (Y1 = y1, . . . , Yn = yn) =

n∏
i=1

pyi(1− p)1−yi .

Here p = p(xi, β) = ex
T
i β

1+ex
T
i
β
. Therefore,

L(β) =
n∏

i=1

p(xi, β)yi(1− p(xi, β))1−yi .

Taking the logarithm, we obtain
l(β) =

n∑
i=1

yi log p(xi, β) + (1− yi) log(1− p(xi, β))

=

n∑
i=1

yi(x
T
i β − log(1 + xTi β))− (1− yi) log(1 + ex

T
i β)

=
n∑
i=1

[yix
T
i β − log(1 + ex

T
i β)].
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Logistic regression: estimating the parameters

Taking the derivative:

∂

∂βj
l(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.

Needs to be solved using numerical methods
(e.g. Newton-Raphson).

Logistic regression often performs well in applications.

As before, penalties can be added to regularize the problem or
induce sparsity. For example,

min
β
−l(β) + α‖β‖1

min
β
−l(β) + α‖β‖2.
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Logistic regression with more than 2 classes

Suppose now the response can take any of {1, . . . ,K} values.
Can still use logistic regression.
We use the categorical distribution instead of the Bernoulli
distribution.
P (Y = i|X = x) = pi, 0 ≤ pi ≤ 1,

∑K
i=1 pi = 1.

Each category has its own set of coefficients:

P (Y = i|X = x) =
ex

T β(i)∑K
i=1 e

xT β(i)
.

Estimation can be done using maximum likelihood as for the
binary case.
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Linear discriminant analysis (LDA)

Categorical data Y . Predictors X1, . . . , Xp.

We saw how logistic regression can be used to predict Y by
modelling the log-odds

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= xTβ.

We now examine other models for P (Y = i|X = x).

Recall: Bayes’ theorem (Rev. Thomas Bayes, 1701–1761). Given
two events A,B:

P (A|B) =
P (B|A)P (A)

P (B)

Source: Wikipedia (Public Domain).
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Using Bayes’ theorem

P (Y = i|X = x) harder to model.
P (X = x|Y = i) easier to model.

P (X = x|Y = red).

Going back to our prediction using Bayes’ theorem:

P (Y = i|X = x) =
P (X = x|Y = i)P (Y = i)

P (X = x)
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Using Bayes’ theorem

More precisely, suppose
Y ∈ {1, . . . , k}.
P (Y = i) = πi (i = 1, . . . , k).
P (X = x|Y = i) ∼ fi(x) (i = 1, . . . , k).

Then

P (Y = i|X = x) =
P (X = x|Y = i)P (Y = i)

P (X = x)

=
P (X = x|Y = i)P (Y = i)∑k
j=1 P (X = x|Y = j)P (Y = j)

=
fi(x)πi∑k
j=1 fj(x)πj

.

We can easily estimate πi using the proportion of observations
in category i.
We need a model for fi(x).
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Using a Gaussian model: LDA and QDA

A natural model for the fjs is the multivariate Gaussian
distribution:

fj(x) =
1√

(2π)p det Σj

e−
1
2

(x−µj)TΣ−1
j (x−µj).

Linear discriminant analysis (LDA): We assume Σj = Σ for all
j = 1, . . . , k.
Quadratic discriminant analysis (QDA): general case, i.e., Σj

can be distinct.
Note: When p is large, using QDA instead of LDA can dramatically
increase the number of parameters to estimate.
In order to use LDA or QDA, we need:

An estimate of the class probabilities πj .
An estimate of the mean vectors µj .
An estimate of the covariance matrices Σj (or Σ for LDA).
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Estimating the parameters

LDA: Suppose we have N observations, and Nj of these
observations belong to the j category (j = 1, . . . , k). We use

π̂j = Nj/N .
µ̂j = 1

Nj

∑
yi=j

xi (average of x over each category).

Σ̂ = 1
N−k

∑k
j=1

∑
yi=j

(xi − µ̂j)(xi − µ̂j)T . (Pooled variance.)

ESL, Figure 4.5.
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LDA: linearity of the decision boundary

In the previous figure, we saw that the decision boundary is linear.
Indeed, examining the log-odds:

log
P (Y = l|X = x)

P (Y = m|X = x)
= log

fl(x)

fm(x)
+ log

πl
πm

= log
πl
πm
− 1

2
(µl + µm)T Σ−1(µl − µm) + xT Σ−1(µl − µm)

= β0 + xTβ.

Note that the previous expression is linear in x.
Recall that for logistic regression, we model

log
P (Y = l|X = x)

P (Y = m|X = x)
= β0 + xTβ.

How is this different from LDA?
In LDA, the parameters are more constrained and are not estimated
the same way.

Can lead to smaller variance if the Gaussian model is correct.

In practice, logistic regression is considered safer and more robust.

LDA and logistic regression often return similar results.
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QDA: quadratic decision boundary

Let us now examing the log-odds for QDA: in that case no
simplification occurs as before

log
P (Y = l|X = x)

P (Y = m|X = x)

= log
πl
πm

+
1

2
log

det Σm

det Σl

− 1

2
(x− µl)TΣ−1

l (x− µl)−
1

2
(x− µm)TΣ−1

l (x− µm).

ESL, Figure 4.6.
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LDA and QDA

Despite their simplicity, LDA and QDA often perform very well.
Both techniques are widely used.

Problems when n < p:
Estimating covariance matrices when n is small compared to p
is challenging.
The sample covariance (MLE for Gaussian)
S = 1

n−1

∑n
j=1(xi − µ̂)(xi − µ̂)T has rank at most min(n, p)

so is singular when n < p.
This is a problem since Σ needs to be inverted in LDA and
QDA.

Many strategies exist to obtain better estimates of Σ (or Σj).
Among them:

Regularization methods. E.g. Σ̂(λ) = Σ̂ + λI.
Graphical modelling (discussed later during the course).
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Python

LDA:

from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis

QDA:

from sklearn.discriminant_analysis import
QuadraticDiscriminantAnalysis
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–Lab–



Example
South African Heart Disease (ESL):

Subset of the Coronary Risk-Factor Study (CORIS) baseline survey.

Carried out in three rural areas of the Western Cape, South Africa
(Rousseauw et al., 1983).

Aim of the study was to establish the intensity of ischemic heart disease
risk factors in that high-incidence region

Data represent white males between 15 and 64, and the response variable
is the presence or absence of myocardial infarction (MI) at the time of the
survey.

160 cases in dataset, and a sample of 302 controls.

Dataset variables
sbp systolic blood pressure
tobacco cumulative tobacco (kg)
ldl low density lipoprotein cholesterol
adiposity
famhist family history of heart disease (Present, Absent)
typea type-A behavior
obesity
alcohol current alcohol consumption
age age at onset
chd response, coronary heart disease
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Example (cont.)

ESL
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Example (cont.)

import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

data = pd.read_csv(’./SAheart.csv’)

y = np.array(data[’chd’])
X = np.array(data.drop(’chd’,axis=1))

# Separate data into train/test
N = 100 # Number of repetitions

log_model = LogisticRegression(fit_intercept=True)
score = np.zeros((N,1))
for i in range(N):

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25)

log_model.fit(X_train,y_train)
score[i] = log_model.score(X_test, y_test)

print(score.mean())
print(score.std())

We obtain about 72% accuracy with a standard deviation of ≈ 4%.
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Example: handwritten digits

Normalized handwritten digits, automatically scanned from
envelopes by the U.S. Postal Service.
Images here have been deslanted and size normalized, resulting
in 16 x 16 grayscale images (Le Cun et al., 1990).
Each line consists of the digit id (0-9) followed by the 256
grayscale values.
There are 7291 training observations and 2007 test
observations.
The test set is notoriously “difficult”, and a 2.5% error rate is
excellent.
These data were kindly made available by the neural network
group at AT&T research labs (thanks to Yann Le Cunn).
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Exercises

South African Heart Disease.
1 Test the code given on the previous slide to predict heart

disease using logistic regression.
2 Repeat the same exercise using LDA and QDA instead of

logistic regression.

Handwritten digits.
1 Use logistic regression to predict the handwritten digits.

Compute the prediction error of your model on the given test
set.

2 Repeat the same exercise using LDA and QDA.
For each dataset, briefly discuss which method works better.

Please submit your work on Canvas by Monday April 6, 11:59 PM.
Only one file per team (please indicate the name of all team
members).
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