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The Gauss—Markov theorem

As before, we assume:
Y:X1/81+"'+Xp/8p:XTﬁ-
We observe X € R"*P, Y € R™. Then
Brs = (XTX)"1XTY.

Under some natural assumptions, we can show that SLg is the best
linear unbiased estimator for 3.
Assumptions: Y = X3 + ¢, where ¢ € R™ with:

Q E(¢)=0.

Q Var(g) = 0?2 < <.

© Cov(ej,e5) =0 for all i # j.
Note:

@ (3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.
@ The errors need not be normal, nor independent, nor
identically distributed.
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Gauss—Markov (cont.)

Remarks: In our model Y = X3 + ¢,
o X is fixed.
@ ¢ is random.
@ Y is random.
e (3 is fixed, but unobservable.

We want to estimate S.
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Gauss—Markov (cont.)

Remarks: In our model Y = X3 + ¢,
o X is fixed.
@ ¢ is random.
@ Y is random.
e (3 is fixed, but unobservable.
We want to estimate S.

A linear estimator of 3, is an estimator of the form 3 = C'Y, where
C = (¢ij) € RP*™ is a matrix, and

Cij = C@'j (X)

Note: £ is ranfiom since Y is assumed to be random.
In particular, frg = (XTX)"'XTY is a linear estimator with
C = (XTX)~1xT.

An estimator is unbiased if E(3) = 6.
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Gauss—Markov (cont.)

UItlmater we want to use 3 to predict ', i.e.,
Vi = X161+ XioBo + - + Xipfy.
We want to control to error of the prediction.
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Gauss—Markov (cont.)

UItlmater we want to use 3 to predict ', i.e.,
Vi = X161+ XioBo + - + Xipfy.
We want to control to error of the prediction.

We define the mean squared error (MSE) of a linear combination of
the coefficients of 3 by

2
MSE(a’ ) = (Za ; ) (a € RP).

Theorem (Gauss—Markov theorem)

Suppose Y = X3 + € where € satisfies the previous assumptions.
Let 3 = C'Y be a linear unbiased estimator of 3. Then for all
a € RP,

MSE(a” Brs) < MSE(a™ B).

We say that frg is the best linear unbiased estimator (BLUE) of

B.
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Gauss—Markov (cont.)

The bias-variance tradeoff
Let Z =a’B and Z = a” 3. (Note: Z is non-random). Then

MSE(a"B) = E (0" (3 - 8)*] = E[(Z - 2)’]
= B(Z?—227 + Z?%)
= BE(Z%) - 2BE(ZZ) + E(Z?)
= 7% —2ZFE(Z) + Var(Z) + E(Z)?
= (Z-E(2))’ +y_af£_)

bias? variance
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Gauss—Markov (cont.)

The bias-variance tradeoff
Let Z =a’B and Z = a” 3. (Note: Z is non-random). Then

MSE(a"B) = E (0" (3 - 8)*] = E[(Z - 2)’]
= B(Z?—227 + Z?%)
= BE(Z%) - 2BE(ZZ) + E(Z?)
= 7% —2ZFE(Z) + Var(Z) + E(Z)?
— (2 B(2)P+ Ya(2),
bias? variance
Therefore, MSE = Bias-squared + Variance.
As a result, if 3 is unbiased, then MSE(a”3) = Var(Z).
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Gauss—Markov (cont.)

We now prove the Gauss—Markov theorem.
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We now prove the Gauss—Markov theorem. Using the bias-variance

decomposition of MSE, it suffices to show that for every unbiased
estimator of 3,
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Gauss—Markov (cont.)

We now prove the Gauss—Markov theorem. Using the bias-variance
decomposition of MSE, it suffices to show that for every unbiased
estimator of 3,

Var(a® frs) < Var(a®B) Va € RP.

Proof. Let 5 = CY where C = (XTX)"'X” + D for some
D e RP*™ We will compute E(3) and Var(a” 3).
B(5) = B[(XTX) X + D)Y]
=B [(XT"X)"'X" + D)(XB + ¢)]
= (I + DX)B.

In order for /3 to be unbiased, we need DX = 0.

We now compute Var(a” ).
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Gauss—Markov (cont.)

Recall:
Var(a® 3) = aT 2,
where ¥ = (Cov(f;, 8;)) = Var(5).
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Gauss—Markov (cont.)
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Gauss—Markov (cont.)

Recall: R
Var(aT ) =
where ¥ = (Cov(f;, B])) (B) More generally if A e RP*P

then
Var(AB) = A Var(8)AT.

Using these formulas, we obtain
Var(j3) = Var(C'Y)
= CVar(Y)CT = s2cC”
= o?(XTX)"' X" + D)((XTX)"' X" + D)"
= 2(XTX)"IXTX(XTX)™!

T —1 T T T -1 T
xX'x)"! X'p? +DX(X'X)"'+ DD
=(DXx)T=0 =0
=o? [(XxTX)"'+ DD'].
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We have shown:

Var(8) = 0>(XTX)"' + o?DDT.
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Var(8) = 0>(XTX)"' + o?DDT.

Note that the matrices (X7 X)~! and DDT are positive
semidefinite.
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We have shown:
Var(8) = 0>(XTX)"' + o?DDT.

Note that the matrices (X7 X)~! and DDT are positive
semidefinite.

Therefore,

Var(a?8) = aT (0*(XTX) ™' + 02DDT)a > aTo*(XTX) a
= Var(a” Brs).

This concludes the proof. Ol
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Back to bias-variance tradeoff

We saw that
MSE(a”3) = (a8 — E(a” 3))? + Var(a' B).
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Back to bias-variance tradeoff

We saw that

MSE(a”3) = (a8 — E(a” 3))? + Var(a' B).
Moreover, according to the Gauss—Markov theorem, for every
unbiased estimator 3,

MSE(aTBLS) = Var(aTBLs) < MSE(aTB)

Problems with least squares:

@ Least squares estimates often have large variance, and can
have low prediction accuracy (especially when working with
small samples).

@ Generally, all the regression coefficients (3; are nonzero, making
the model hard to interpret. Often, we want to identify the
relevant variables to get the “big picture”.

We can often increase the prediction accuracy by sacrificing a little
bit of bias to reduce the variance of the estimator.

We will later examine some useful alternatives to least squares.
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Training error and test error

A natural way to improve least squares is to force some of the
coefficients to be zero.
@ Resulting estimator is biased, but can benefit from the
bias-variance tradeoff.
@ Model is easier to interpret.
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Training error and test error

A natural way to improve least squares is to force some of the
coefficients to be zero.
@ Resulting estimator is biased, but can benefit from the
bias-variance tradeoff.
@ Model is easier to interpret.
Complexity of the model:
@ A complex model that fits data very well will often make poor
predictions. Overfitting.
@ On the other hand, a very simple model may not capture the
complexity of the data. Underfitting.
To test the ability of a model to predict new values:
© We split our data into 2 parts (training data and test data) as
uniformly as possible. People often use 75% training, 25% test.
@ We fit our model using the training data only. (This minimizes
the training error).
© We use the fitted model to predict values of the test data and

compute the test error.
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Training error and test error (cont.)

Splitting data into training/test data:

X

{1

n2 Test E

In the case of least squares:
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X

{1

n2 Test E

In the case of least squares:
3 T —1yT
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Training error and test error (cont.)

Splitting data into training/test data:

X
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Training error and test error (cont.)

Splitting data into training/test data:

X

{1

n2

In the case of least squares:
o /8 = (th;ainXtrain)_lth;ain}/train-
(2] Y:cest = Xtestﬁ-
© Test error:

n2

1 ~
MSEtest - ;2 Z(}/test,i - }/test,i)2-
=1
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Training error and test error (cont.)

Splitting data into training/test data:

X

{1

n2 Test g

In the case of least squares:
o /8 = (th;ainXtrain)_lth;ain}/train-
(2] Y:cest = Xtestﬁ-
© Test error:

n2

1 ~
MSEtest - ;2 Z(}/test,i - }/test,i)2-
=1

We choose a model that minimizes the test error.
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Training error and test error (cont.)

Typical behavior of the test and training error, as model complexity

is varied.

Prediction Error

High Bias Low Bias
Low Variance High Variance
- -
Test Sample
Training Sample
Low High

Model Complexity

ESL, Fig 2.11.
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Training sets and test sets (Python)

Scikit-learn provides a function to split the data automatically for
us.
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Training sets and test sets (Python)

Scikit-learn provides a function to split the data automatically for
us.
from sklearn.model_selections import train_test_split

# Split data into training and test sets

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25,
random_state=42)

# Fit model on training data
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(X_train,y_train)

# Returns the coefficient of determination R~2.
lin_model.score(X_test, y_test)
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The coefficient of determination

@ Regression models are often ranked using the coefficient of
determination called “R squared” and denoted R2.
R2 =1 Z?:l(yl - yAZ)2
== -
> (Y — )2
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The coefficient of determination

@ Regression models are often ranked using the coefficient of
determination called “R squared” and denoted R2.

R2 =1 Z%l(yl - yAZ)2
Yo (yi —7)?

@ In some sense, the B2 measures “how much better” is the
prediction, compared to a constant prediction equal to the
average of the y;s.

@ The score method in sklearn returns the R2.

@ We want a model with a test R? as close to 1 as possible.
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Lab - Part 1

@ Load the Boston dataset. Read the description of the dataset.

from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)

@ Split the data into a training and a test set.

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25,
random_state=42)

@ Fit the model on the training data.

lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(X_train,y_train)

e Compute the mean squared error and the R? on the test data:

from sklearn.metrics import mean_squared_error
y_test_pred = lin_model.predict(X_test)
mean_squared_error(y_test, y_test_pred)
lin_model.score(X_test, y_test)
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Lab - Part 2

o Compute the training error and the test error obtained by
using only the first ¢ variables, fori =1,...,13:

err_test = np.zeros(13)
err_train = np.zeros(13)

for i in range(13):
X_train, X_test, y_train, y_test =
train_test_split(X[:,0:i+1], y,
test_size=0.25, random_state=42)
lin_model = LinearRegression(fit_intercept=Trus
lin_model.fit(X_train,y_train)

etc...

~—

@ Plot the train and test error as a function of 3.
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Result

w 50 4

—— Training error
—— Testerror

6 8
Number of variables

10

12
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