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The Gauss–Markov theorem

As before, we assume:

Y = X1β1 + · · ·+Xpβp = XTβ.

We observe X ∈ Rn×p, Y ∈ Rn. Then

β̂LS = (XTX)−1XTY.

Under some natural assumptions, we can show that β̂LS is the best
linear unbiased estimator for β.

Assumptions: Y = Xβ + ε, where ε ∈ Rn with:
1 E(εi) = 0.
2 Var(εi) = σ2 <∞.
3 Cov(εi, εj) = 0 for all i 6= j.

Note:
(3) means that the errors are uncorrelated. In particular, (3)
holds if the errors are independent.
The errors need not be normal, nor independent, nor
identically distributed.
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Gauss–Markov (cont.)

Remarks: In our model Y = Xβ + ε,
X is fixed.
ε is random.
Y is random.
β is fixed, but unobservable.

We want to estimate β.

A linear estimator of β, is an estimator of the form β̂ = CY, where
C = (cij) ∈ Rp×n is a matrix, and

cij = cij(X).

Note: β̂ is random since Y is assumed to be random.
In particular, β̂LS = (XTX)−1XTY is a linear estimator with
C = (XTX)−1XT .

An estimator is unbiased if E(β̂) = β.
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Gauss–Markov (cont.)

Ultimately, we want to use β̂ to predict Y , i.e.,
Ŷi = Xi1β̂1 +Xi2β̂2 + · · ·+Xipβ̂p.
We want to control to error of the prediction.

We define the mean squared error (MSE) of a linear combination of
the coefficients of β̂ by

MSE(aT β̂) = E

( n∑
i=1

ai(β̂i − βi)

)2
 (a ∈ Rp).

Theorem (Gauss–Markov theorem)

Suppose Y = Xβ + ε where ε satisfies the previous assumptions.
Let β̂ = CY be a linear unbiased estimator of β. Then for all
a ∈ Rp,

MSE(aT β̂LS) ≤ MSE(aT β̂).

We say that β̂LS is the best linear unbiased estimator (BLUE) of
β.
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Ŷi = Xi1β̂1 +Xi2β̂2 + · · ·+Xipβ̂p.
We want to control to error of the prediction.

We define the mean squared error (MSE) of a linear combination of
the coefficients of β̂ by

MSE(aT β̂) = E

( n∑
i=1

ai(β̂i − βi)

)2
 (a ∈ Rp).

Theorem (Gauss–Markov theorem)

Suppose Y = Xβ + ε where ε satisfies the previous assumptions.
Let β̂ = CY be a linear unbiased estimator of β. Then for all
a ∈ Rp,

MSE(aT β̂LS) ≤ MSE(aT β̂).

We say that β̂LS is the best linear unbiased estimator (BLUE) of
β.

4/17



Gauss–Markov (cont.)

The bias-variance tradeoff
Let Z = aTβ and Ẑ = aT β̂. (Note: Z is non-random). Then

MSE(aT β̂) = E
[
(aT (β̂ − β))2

]
= E

[
(Ẑ − Z)2

]
= E(Z2 − 2ZẐ + Ẑ2)

= E(Z2)− 2E(ZẐ) + E(Ẑ2)

= Z2 − 2ZE(Ẑ) + Var(Ẑ) + E(Ẑ)2

= (Z − E(Ẑ))2︸ ︷︷ ︸
bias2

+ Var(Ẑ)︸ ︷︷ ︸
variance

.

Therefore, MSE = Bias-squared + Variance.

As a result, if β̂ is unbiased, then MSE(aTβ) = Var(Ẑ).
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= (Z − E(Ẑ))2︸ ︷︷ ︸
bias2

+ Var(Ẑ)︸ ︷︷ ︸
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Gauss–Markov (cont.)

We now prove the Gauss–Markov theorem.

Using the bias-variance
decomposition of MSE, it suffices to show that for every unbiased
estimator of β,

Var(aT β̂LS) ≤ Var(aT β̂) ∀a ∈ Rp.

Proof. Let β̂ = CY where C = (XTX)−1XT +D for some
D ∈ Rp×n. We will compute E(β̂) and Var(aT β̂).

E(β̂) = E
[
((XTX)−1XT +D)Y

]
= E

[
((XTX)−1XT +D)(Xβ + ε)

]
= (I +DX)β.

In order for β̂ to be unbiased, we need DX = 0.

We now compute Var(aT β̂).
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Gauss–Markov (cont.)

Recall:
Var(aT β̂) = aTΣa,

where Σ = (Cov(β̂i, β̂j)) = Var(β̂).

More generally, if A ∈ Rp×p,
then

Var(Aβ̂) = AVar(β̂)AT .

Using these formulas, we obtain

Var(β̂) = Var(CY)

= C Var(Y)CT = σ2CCT

= σ2((XTX)−1XT +D)((XTX)−1XT +D)T

= σ2(XTX)−1XTX(XTX)−1

+ σ2

(XTX)−1 XTDT︸ ︷︷ ︸
=(DX)T=0

+DX︸︷︷︸
=0

(XTX)−1 +DDT


= σ2

[
(XTX)−1 +DDT

]
.
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Gauss–Markov

We have shown:

Var(β̂) = σ2(XTX)−1 + σ2DDT .

Note that the matrices (XTX)−1 and DDT are positive
semidefinite.

Therefore,

Var(aT β̂) = aT (σ2(XTX)−1 + σ2DDT )a ≥ aTσ2(XTX)−1a

= Var(aT β̂LS).

This concludes the proof.
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Back to bias-variance tradeoff

We saw that

MSE(aT β̂) = (aTβ − E(aT β̂))2 + Var(aT β̂).

Moreover, according to the Gauss–Markov theorem, for every
unbiased estimator β̂,

MSE(aT β̂LS) = Var(aT β̂LS) ≤ MSE(aT β̂)

Problems with least squares:
1 Least squares estimates often have large variance, and can

have low prediction accuracy (especially when working with
small samples).

2 Generally, all the regression coefficients βi are nonzero, making
the model hard to interpret. Often, we want to identify the
relevant variables to get the “big picture”.

We can often increase the prediction accuracy by sacrificing a little
bit of bias to reduce the variance of the estimator.
We will later examine some useful alternatives to least squares.
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Training error and test error

A natural way to improve least squares is to force some of the
coefficients to be zero.

Resulting estimator is biased, but can benefit from the
bias-variance tradeoff.
Model is easier to interpret.

Complexity of the model:
A complex model that fits data very well will often make poor
predictions. Overfitting.
On the other hand, a very simple model may not capture the
complexity of the data. Underfitting.

To test the ability of a model to predict new values:
1 We split our data into 2 parts (training data and test data) as

uniformly as possible. People often use 75% training, 25% test.
2 We fit our model using the training data only. (This minimizes

the training error).
3 We use the fitted model to predict values of the test data and

compute the test error.
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predictions. Overfitting.
On the other hand, a very simple model may not capture the
complexity of the data. Underfitting.

To test the ability of a model to predict new values:
1 We split our data into 2 parts (training data and test data) as

uniformly as possible. People often use 75% training, 25% test.
2 We fit our model using the training data only. (This minimizes

the training error).
3 We use the fitted model to predict values of the test data and

compute the test error.
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Training error and test error (cont.)

Splitting data into training/test data:

In the case of least squares:

1 β̂ = (XT
trainXtrain)−1XT

trainYtrain.
2 Ŷtest = Xtestβ̂.
3 Test error:

MSEtest =
1

n2

n2∑
i=1

(Ŷtest,i − Ytest,i)
2.

We choose a model that minimizes the test error.
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(Ŷtest,i − Ytest,i)
2.

We choose a model that minimizes the test error.
11/17



Training error and test error (cont.)

Typical behavior of the test and training error, as model complexity
is varied.

ESL, Fig 2.11.

12/17



Training sets and test sets (Python)

Scikit-learn provides a function to split the data automatically for
us.

from sklearn.model_selections import train_test_split

# Split data into training and test sets
X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.25,
random_state=42)

# Fit model on training data
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(X_train,y_train)

# Returns the coefficient of determination R^2.
lin_model.score(X_test, y_test)
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The coefficient of determination

Regression models are often ranked using the coefficient of
determination called “R squared” and denoted R2.

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

.

In some sense, the R2 measures “how much better” is the
prediction, compared to a constant prediction equal to the
average of the yis.

The score method in sklearn returns the R2.
We want a model with a test R2 as close to 1 as possible.
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Lab - Part 1

Load the Boston dataset. Read the description of the dataset.
from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)

Split the data into a training and a test set.
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25,
random_state=42)

Fit the model on the training data.
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(X_train,y_train)

Compute the mean squared error and the R2 on the test data:
from sklearn.metrics import mean_squared_error
y_test_pred = lin_model.predict(X_test)
mean_squared_error(y_test, y_test_pred)
lin_model.score(X_test, y_test)
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Lab - Part 2

Compute the training error and the test error obtained by
using only the first i variables, for i = 1, . . . , 13:
err_test = np.zeros(13)
err_train = np.zeros(13)

for i in range(13):
X_train, X_test, y_train, y_test =
train_test_split(X[:,0:i+1], y,
test_size=0.25, random_state=42)
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(X_train,y_train)

etc...

Plot the train and test error as a function of i.
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Result
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