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Comparison of regression methods seen so far

@ Ordinary least squares (OLS)

Minimizes sum of squares.

Best linear unbiased estimator.

Solution not unique when n < p.

Estimate unstable when the predictors are collinear.

Generally does not lead to best prediction error. Bias-variance
trade-off.
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Comparison of regression methods seen so far

@ Ordinary least squares (OLS)

Minimizes sum of squares.

Best linear unbiased estimator.

Solution not unique when n < p.

Estimate unstable when the predictors are collinear.
Generally does not lead to best prediction error. Bias-variance
trade-off.

@ Ridge regression ({2 penalty)

Regularized solution.

Estimator exists and is stable, even when n < p.
Easy to compute (add multiple of identity to X7 X).
Coefficients not set to zero (no model selection).
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Comparison of regression methods seen so far (cont.)

© Subset selection methods (best subset, stepwise and stagewise
approaches)

o Generally leads to a favorable bias-variance trade-off.

o Model selection. Leads to models that are easier to interpret
and work with.

o Can be computationally intensive (e.g. best subset can only be
computed for small p)

o Some of the approaches are greedy/less-rigorous.
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Comparison of regression methods seen so far (cont.)

© Subset selection methods (best subset, stepwise and stagewise
approaches)
o Generally leads to a favorable bias-variance trade-off.
o Model selection. Leads to models that are easier to interpret
and work with.
o Can be computationally intensive (e.g. best subset can only be
computed for small p)
o Some of the approaches are greedy/less-rigorous.
© Lasso (/1 penalty)
o Shrinks and sets to zero the coefficients (shrinkage + model
selection).
o Generally leads to a favorable bias-variance trade-off.
o Model selection. Leads to models that are easier to interpret
and work with.
o Can be efficiently computed.
e Supporting theory. Active area of research.
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Choosing parameters: cross-validation

@ Ridge, lasso, elastic net have regularization parameters.
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Choosing parameters: cross-validation

@ Ridge, lasso, elastic net have regularization parameters.

o We obtain a family of estimators as we vary the parameter(s).

@ An optimal parameter needs to be chosen in a principled way.

@ Cross-validation is a popular approach for rigorously choosing
parameters.

K-fold cross-validation:

Split data into K equal (or almost equal) parts/folds at random.
for each parameter \; do
for j=1,...,K do
Fit model on data with fold j removed.
Test model on remaining fold — j-th test error.
end for
Compute average test errors for parameter \;.
end for
Pick parameter with smallest average error.
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K-fold CV

More precisely,
@ Split data into K folds Fi,..., Fk.

1 2 3 4 5

Validation Train Train

Train Train
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K-fold CV

More precisely,
@ Split data into K folds Fi,..., Fk.

1 2 3 4 5

Train Train Validation Train Train

@ Let L(y,7) be a loss function. For example,
Ly, g) = lly = 913 = 2231 (v — 90)*.
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K-fold CV

More precisely,
@ Split data into K folds Fi,..., Fk.

o Let L(y,y) be a loss function. For example,

L(y.9) = lly = 9ll3 = 275, (4 — §)*.
o Let f/\ (x) be the model fitted on all, but the k-th fold.

o Let

k 1i€F)

:g:: :E:: yz:.fA i E ;

@ Pick X among a relevant set of parameters

A= argmin CV())
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Scikit-learn has nice general methods for splitting data.

from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.linear_model import Lasso

# Generate random data
n = 100

p=25

X = np.random.randn(n,p)
epsilon = np.random.randn(n,1)
beta = np.random.rand(p)

y = X.dot(beta) + epsilon

# Train-test split
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25)

print (X_train.shape)
print (X_test.shape)
print(y_train.shape)
print(y_test.shape)

# K-fold CV
from sklearn.model_selection import KFold
kf = KFold(n_splits=10)
for train, test in kf.split(X):
print ("Train %s \n Test %s" % (train, test))
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Python: Implementing CV

import numpy as np
from sklearn.linear_model import Lasso
from sklearn.model_selection import KFold

# Generate random data
= 100

n
P 100

X = np.random.randn(n,p)

epsilon = np.random.randn(n,1)
beta = np.zeros((p,1))

beta[0:8] = 10*np.random.rand(8,1)
y = X.dot(beta) + epsilon

K =10 # K-fold CV

N = len(alphas) # Number of lasso parameters
scores = np.zeros((N,K))
kf = KFold(n_splits=10)

for i in range(N):
clf = Lasso(alphas[i])

X_train, X_test, y_train, y_test =
X[train], X[test], y[train], yl[test]
clf .fit(X_train,y_train)
scores[i,j] = clf.score(X_test, y_test)
# Compute average CV score for each parameter
scores_avg = scores.mean(axis=1)

alphas = np.exg(np.linspace(np.log(0.01),np.log(l),lOO))

for j, (train, test) in enumerate(kf.split(X)):

# Returns R"2
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Implementing CV
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Note: Here we want to choose o to maximize the R2.

Exercise: Implement 10-fold CV for Ridge regression. Plot CV
error.
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Scikit-learn sometimes has automatic methods for performing
cross-validation.

import numpy as np
from sklearn.linear_model import LassoCV
import matplotlib.pyplot as plt

# Generate random data
100

n
) 100

X = np.random.randn(n,p)

epsilon = np.random.randn(n,1)
beta = np.zeros((p,1))

betal[0:8] = 10*np.random.rand(8,1)
y = X.dot(beta) + epsilon

K =10 # K-fold CV

y = y.reshape(n) # LassoCV doesn’t work if y is (n x 1)
clf = LassoCV(n_alphas = 100, cv = K)

clf. fit(X,y)

Remark: safer to examine CV curve.
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One SD rule

For each parameter, one can also naturally report the standard
deviation of the error acroos the different folds.

# Compute average CV score for each parameter
scores_avg = scores.mean(axis=1)
scores_std = scores.std(axis=1)

plt.plot(alphas, scores_avg,’-b?’)
plt.fill_between(alphas, scores_avg-scores_std, s
cores_avg+scores_std,facecolor="r’,alpha=0.5)

plt.legend([r’Average $R"2%$’, r’One sd interval’],
loc = ’lower left’)

plt.plot(alphas, np.ones((len(alphas),1))*scores_avg.max(),
’--k’, linewidth=1.2)

plt.xlabel(r’$\alpha$’, fontsize=18)
plt.ylabel(r’$R~2$’, fontsize = 18)
plt.show()
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One sd rule (cont.)
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@ Provides an idea of the error made when estimating the R?.

e Can pick a lasso parameter for which the maximum R? is
within a one standard deviation interval of the actual value.

@ Useful technique to select a model that is more sparse in a
principled way (when necessary).
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Model selection vs Model assessment

Two related, but different goals:

@ Model selection: estimating the performance of different models in
order to choose the “best” one.
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Model selection vs Model assessment

Two related, but different goals:

@ Model selection: estimating the performance of different models in
order to choose the “best” one.
@ Model assessment: having chosen a final model, estimating its
prediction error (generalization error) on new data.
Model assessment: is the estimator really good? compare different
models with their own sets of parameters.
Generally speaking, the CV error provides a good estimate of the
prediction error.
@ When enough data is available, it is better to separate the data into
three parts: train/validate, and test.

@ Typically: 50% train, 25% validate, 25% test.
@ Test data is “kept in a vault”, i.e., not used for fitting or choosing
the model.

@ Other methods (e.g. AIC, BIC, etc.) can be used when working with

very little data.
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