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Exercise

1 Load the Auto dataset.

2 Use the lm function to �t a linear model
mpg = β0 + β1 · horsepower+ β2 · weight.

3 Compute the coe�cients directly by solving the normal
equations. Do you get the same results?

Note: You may need to convert the data frame to a matrix using
as.matrix(X).

If you do not get the same results: did you include an intercept in
the normal equations?

X = as.matrix(Auto[,c(4,5)])
Xp = cbind(matrix(1,392,1), X)
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Training error and test error

Complexity of the model:

A complex model that �ts data very well will often make poor
predictions. Over�tting.

On the other hand, a very simple model may not capture the
complexity of the data. Under�tting.

To test the ability of a model to predict new values:

1 We split our data into 2 parts (training data and test data) as
uniformly as possible. People often use 75% training, 25% test.

2 We �t our model using the training data only. (This minimizes
the training error).

3 We use the �tted model to predict values of the test data and
compute the test error.
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Training error and test error (cont.)

Splitting data into training/test data:

In the case of least squares:

1 β̂ = (XT
train

Xtrain)
−1XT

train
Ytrain.

2 Ŷtest = Xtestβ̂.
3 Test error:

MSEtest =
1

n2

n2∑
i=1

(Ŷtest,i − Ytest,i)
2.

We choose a model that minimizes the test error.
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(Ŷtest,i − Ytest,i)
2.

We choose a model that minimizes the test error.

4/11



Training error and test error (cont.)

Splitting data into training/test data:

In the case of least squares:
1 β̂ = (XT

train
Xtrain)

−1XT
train

Ytrain.
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Training error and test error (cont.)

Typical behavior of the test and training error, as model complexity
is varied.

ESL, Fig 2.11.
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Train/test sets in R

library(ISLR)
data(Auto)

Auto <- Auto[,-9] # Remove the "names" column

n <- dim(Auto)[1]

ntrain <- floor(0.75*n)
ntest <- n - ntrain

train_ind <- sample(1:n, ntrain)

train <- Auto[train_ind,]
test <- Auto[-train_ind,]

Compute the test error:

model_full <- lm(mpg ~ ., data=train)
mean((predict(model_full, test[,-1]) - test[,1])**2)
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Using a subset of variables

Fit a model using only the last 3 variables:

model <- lm(mpg ~ ., data=train[,append(c(5,7,8),1)])
mean((predict(model, test[,c(5,7,8)]) - test[,1])**2)

Minimal test error for subsets of a given size:
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Examining all subsets

For this dataset, we can examine all the possible subsets (usually
impossible):
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Best subset selection

Best subset selection: Given k ∈ {1, . . . , p}, we �nd the subset
of size k of {1, . . . , p} that minimizes the prediction error.

Note: there are
(
p
k

)
subsets of size k and 2k possible subsets.

So the procedure is only computationally feasible for small
values of p.

The leaps and bounds procedure (Furnival and Wilson, 1974)
makes this feasible for p as large as 30 or 40.
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Forward- and Backward- stepwise regression

Best subset selection performs well, but is too computationally
intensive to be useful in practice.

Two natural �greedy� variants of the best subset selection
technique:

Forward stepwise regression: starts with the intercept, and
then sequentially adds into the model the predictor that most
improves the �t.
Backward stepwise regression: starts with the full model,
and sequentially deletes the predictor that has the least impact
on the �t.

Can be used even when the number of variables is very large.
However,

Greedy approach: doesn't guarantee a global optimum.
Less rigorous than other methods, less supporting theory.

Nevertheless, the stepwise approaches often return predictors
similar to the predictors obtained from more complex methods with
better theory.
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The R package leaps

1 Install and load the leaps package.

2 Use the regsubsets function to perform forward and
backward stepwise regressions.

library(leaps)

regfit.fwd = regsubsets(mpg ~ ., data=Auto[,-9],
method="forward")

regfit.bwd = regsubsets(mpg ~ ., data=Auto[,-9],
method="backward")

3 Examine the output of summary(regfit.fwd) and
plot(regfit.fwd).
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