MATH 567: Mathematical Techniques in Data

Science
Lab 2

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

February 15, 2016

1/11



Exercise

@ Load the Auto dataset.

@ Use the 1m function to fit a linear model
mpg = Py + P1 - horsepower + (35 - weight.

© Compute the coefficients directly by solving the normal
equations. Do you get the same results?

Note: You may need to convert the data frame to a matrix using
as.matrix(X).
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Exercise

O Load the Auto dataset.
@ Use the 1m function to fit a linear model
mpg = Py + P1 - horsepower + (35 - weight.
© Compute the coefficients directly by solving the normal
equations. Do you get the same results?
Note: You may need to convert the data frame to a matrix using
as.matrix(X).
If you do not get the same results: did you include an intercept in
the normal equations?

X = as.matrix(Auto[,c(4,5)])
Xp = cbind(matrix(1,392,1), X)
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Training error and test error

Complexity of the model:

@ A complex model that fits data very well will often make poor
predictions. Overfitting.
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Training error and test error

Complexity of the model:

@ A complex model that fits data very well will often make poor
predictions. Overfitting.

@ On the other hand, a very simple model may not capture the
complexity of the data. Underfitting.

To test the ability of a model to predict new values:

© We split our data into 2 parts (training data and test data) as
uniformly as possible. People often use 75% training, 25% test.

@ We fit our model using the training data only. (This minimizes
the training error).

© We use the fitted model to predict values of the test data and
compute the test error.
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Training error and test error (cont.)

Splitting data into training/test data:

X

{1

n2 Test g

In the case of least squares:
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Training error and test error (cont.)

Splitting data into training/test data:

X

{1

n2 Test g

In the case of least squares:
3 T —1yT
Q5= (XtrainXtrail’l) Xtrain}/train'
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Training error and test error (cont.)
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Training error and test error (cont.)

Splitting data into training/test data:

X

{1

n2 Test g

In the case of least squares:
o ,8 = (th;ainXtrain)_ng;ajnnrain-
Q Yiest = Xtestﬁ-
© Test error:

n2

1 ~
MSEtest - 772 Z(Kes‘c,i - Y:cest,i)2-
=1
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Training error and test error (cont.)

Splitting data into training/test data:

X

{1

n2 Test g

In the case of least squares:
o ,8 = (th;ainXtrain)_ng;ajnnrain-
Q Yiest = Xtestﬁ-
© Test error:

n2

1 ~
MSEtest - 772 Z(Kes‘c,i - Y:cest,i)2-
=1

We choose a model that minimizes the test error.
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Training error and test error (cont.)

Typical behavior of the test and training error, as model complexity

is varied.

Prediction Error

High Bias Low Bias
Low Variance High Variance
- -
Test Sample
Training Sample
Low High

Model Complexity

ESL, Fig 2.11
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Train/test sets in R

library(ISLR)
data(Auto)

Auto <- Auto[,-9] # Remove the '"names"
n <- dim(Auto) [1]

ntrain <- floor(0.75%n)
ntest <- n - ntrain

train_ind <- sample(l:n, ntrain)

train <- Auto[train_ind,]
test <- Auto[-train_ind,]

column
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Train/test sets in R

library(ISLR)
data(Auto)

Auto <- Auto[,-9] # Remove the 'names'" column
n <- dim(Auto) [1]

ntrain <- floor(0.75%n)
ntest <- n - ntrain

train_ind <- sample(l:n, ntrain)

train <- Auto[train_ind,]
test <- Auto[-train_ind,]

Compute the test error:

model_full <- lm(mpg ~ ., data=train)
mean ((predict(model_full, test[,-1]) - test[,1])#*%2)
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Using a subset of variables

Fit a model using only the last 3 variables:

model <- 1lm(mpg ~ ., data=train[,append(c(5,7,8),1)])
mean ((predict(model, test[,c(5,7,8)]) - test[,1])*x*2)
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Using a subset of variables

Fit a model using only the last 3 variables:

model <- 1lm(mpg ~ ., data=train[,append(c(5,7,8),1)])
mean ((predict(model, test[,c(5,7,8)]) - test[,1])*x*2)

Minimal test error for subsets of a given size:

Best subset test MSE

1045 1050 1055 1060 1065 1070 1075  10.80
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Examining all subsets

For this dataset, we can examine all the possible subsets (usually
impossible):
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Best subset selection

Best subset selection: Given k € {1,...,p}, we find the subset
of size k of {1,...,p} that minimizes the prediction error.
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@ Note: there are (i) subsets of size k and 2" possible subsets.
So the procedure is only computationally feasible for small
values of p.
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Best subset selection

Best subset selection: Given k € {1,...,p}, we find the subset
of size k of {1,...,p} that minimizes the prediction error.

@ Note: there are (i) subsets of size k and 2" possible subsets.
So the procedure is only computationally feasible for small
values of p.

@ The leaps and bounds procedure (Furnival and Wilson, 1974)
makes this feasible for p as large as 30 or 40.
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Forward- and Backward- stepwise regression

@ Best subset selection performs well, but is too computationally
intensive to be useful in practice.
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Forward- and Backward- stepwise regression

@ Best subset selection performs well, but is too computationally
intensive to be useful in practice.

Two natural “greedy” variants of the best subset selection
technique:

o Forward stepwise regression: starts with the intercept, and
then sequentially adds into the model the predictor that most
improves the fit.

o Backward stepwise regression: starts with the full model,
and sequentially deletes the predictor that has the least impact
on the fit.

Can be used even when the number of variables is very large.
However,

@ Greedy approach: doesn’t guarantee a global optimum.

@ Less rigorous than other methods, less supporting theory.
Nevertheless, the stepwise approaches often return predictors
similar to the predictors obtained from more complex methods with

better theory.
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The R package leaps

@ Install and load the leaps package.

@ Use the regsubsets function to perform forward and
backward stepwise regressions.

library(leaps)

regfit.fwd = regsubsets(mpg ~ ., data=Auto[,-9],
method="forward")

regfit.bwd = regsubsets(mpg ~ ., data=Autol[,-9],
method="backward")

© Examine the output of summary(regfit.fwd) and
plot(regfit.fwd).
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