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Exercise 1

1 Use the command read.table(file, header = FALSE, sep =

" ") to load the zip codes training and test sets (available on

Sakai). Create 4 variables: train.y, train.x, test.y, test.x.

Note: convert train.y, test.y to �factors� using the factor command.

2 Use the knn command to predict the labels on the test set using the

training set with k = 5 neighbors. Compute the prediction error.

3 Install the caret and e1071 packages.

4 Use cross-validation to choose a knn parameter:

library(caret)

ctrl <- trainControl(method="repeatedcv", number=10,
repeats = 1)

fitKnn = train(train.x, train.y, method="knn",
trControl = ctrl,
tuneGrid=expand.grid(.k=1:10),
metric="Accuracy")

5 Compute the prediction error of the �best� knn model.
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Logistic regression

Suppose we work with binary outputs, i.e., yi ∈ {0, 1}.
Linear regression may not be the best model.

xTβ ∈ R not in {0, 1}.
Linearity may not be appropriate. Does doubling the predictor

doubles the probability of Y = 1? (e.g. probability of going to

the beach vs outdoors temperature).

Logistic regression: Di�erent perspective. Instead of modelling

the {0, 1} output, we model the probability that Y = 0, 1.

Idea: We model P (Y = 1|X = x).

Now: P (Y = 1|X = x) ∈ [0, 1] instead of {0, 1}.
We want to relate that probability to xTβ.

We assume

logit(P (Y = 1|X = x)) = log
P (Y = 1|X = x)

1− P (Y = 1|X = x)

= log
P (Y = 1|X = x)

P (Y = 0|X = x)
= xTβ.
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Logistic regression (cont.)

Equivalently,

P (Y = 1|X = x) =
ex

T β

1 + exT β

P (Y = 0|X = x) = 1− P (Y = 1|X = x) =
1

1 + exT β

The function f(x) = ex/(1 + ex) = 1/(1 + e−x) is called the

logistic function.

log P (Y=1|X=x)
P (Y=0|X=x) is the

log-odds ratio.

Larger positive values of xTβ ⇒ p ≈ 1.

Larger negative values of xTβ ⇒ p ≈ 0.
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Logistic regression (cont.)

In summary, we are assuming:

Y |X = x ∼ Bernoulli(p).

logit(p) = logit(E(Y |X = x)) = xTβ.

More generally, one can use a generalized linear model (GLM). A

GLM consists of:

A probability distribution for Y |X = x from the exponential

family.

A linear predictor η = xTβ.

A link function g such that g(E(Y |X = x)) = η.
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Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y . We typically

estimate the parameter β using maximum likelihood.

Recall: If Y ∼ Bernoulli(p), then

P (Y = y) = py(1− p)1−y, y ∈ {0, 1}.
Thus, L(p) =

∏n
i=1 p

yi(1− p)1−yi .
Here p = p(xi, β) =

ex
T
i β

1+ex
T
i
β
. Therefore,

L(β) =

n∏
i=1

p(xi, β)
yi(1− p(xi, β))1−yi .

Taking the logarithm, we obtain

l(β) =

n∑
i=1

yi log p(xi, β) + (1− yi) log(1− p(xi, β))

=

n∑
i=1

yi(x
T
i β − log(1 + xTi β))− (1− yi) log(1 + ex

T
i β)

=

n∑
i=1

[yix
T
i β − log(1 + ex

T
i β)].
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Logistic regression: estimating the parameters

Taking the derivative:

∂

∂βj
l(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.

Needs to be solved using numerical methods

(e.g. Newton-Raphson).

Logistic regression often performs well in applications.

As before, penalties can be added to regularize the problem or

induce sparsity. For example,

min
β
−l(β) + α‖β‖1

min
β
−l(β) + α‖β‖2.
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Logistic regression with more than 2 classes

Suppose now the response can take any of {1, . . . ,K} values.
Can still use logistic regression.

We use the categorical distribution instead of the Bernoulli

distribution.

P (Y = i|X = x) = pi, 0 ≤ pi ≤ 1,
∑K

i=1 pi = 1.

Each category has its own set of coe�cients:

P (Y = i|X = x) =
ex

T β(i)∑K
i=1 e

xT β(i)
.

Estimation can be done using maximum likelihood as for the

binary case.
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Multiple classes of data

Other popular approaches to classify data from multiple categories.

One versus all:(or one versus the rest) Fit the model to separate

each class against the remaining classes. Label a new point x
according to the model for which xTβ + β0 is the largest.

Need to �t the model K times.
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Multiple classes of data (cont.)

One versus one:
1 Train a classi�er for each possible pair of classes.

Note: There are
(
K
2

)
= K(K − 1)/2 such pairs.

2 Classify a new points according to a majority vote: count the

number of times the new point is assign to a given class, and

pick the class with the largest number.

Need to �t the model
(
K
2

)
times (computationally intensive).

10/10



Multiple classes of data (cont.)

One versus one:
1 Train a classi�er for each possible pair of classes.

Note: There are
(
K
2

)
= K(K − 1)/2 such pairs.

2 Classify a new points according to a majority vote: count the

number of times the new point is assign to a given class, and

pick the class with the largest number.

Need to �t the model
(
K
2

)
times (computationally intensive).

10/10


