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Exercise 1

© Use the command read.table(file, header = FALSE, sep =
" ") to load the zip codes training and test sets (available on
Sakai). Create 4 variables: train.y, train.x, test.y, test.x.

Note: convert train.y, test.y to “factors’ using the factor command.

@ Use the knn command to predict the labels on the test set using the
training set with & = 5 neighbors. Compute the prediction error.

© Install the caret and e1071 packages.

© Use cross-validation to choose a knn parameter:

library(caret)

ctrl <- trainControl(method="repeatedcv", number=10,
repeats = 1)

fitKnn = train(train.x, train.y, method="knn",
trControl = ctrl,
tuneGrid=expand.grid(.k=1:10),
metric="Accuracy")

© Compute the prediction error of the “best” knn model.
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Logistic regression

Suppose we work with binary outputs, i.e., y; € {0,1}.
Linear regression may not be the best model.
o v7'3 € R notin {0,1}.
@ Linearity may not be appropriate. Does doubling the predictor
doubles the probability of Y = 17 (e.g. probability of going to
the beach vs outdoors temperature).
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Suppose we work with binary outputs, i.e., y; € {0,1}.
Linear regression may not be the best model.

o v7'3 € R notin {0,1}.

@ Linearity may not be appropriate. Does doubling the predictor
doubles the probability of Y = 17 (e.g. probability of going to
the beach vs outdoors temperature).

Logistic regression: Different perspective. Instead of modelling
the {0, 1} output, we model the probability that Y = 0, 1.
Idea: We model P(Y = 1|X = x).
e Now: P(Y =1|X =z) € [0,1] instead of {0,1}.
e We want to relate that probability to z” 3.
We assume

P(Y =1|X =2)

1-PY =1|X =2)
P =1X=2) sy
PY =0|X ==x)

logit(P(Y = 1|X =z)) = log

= log
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Logistic regression (cont.)

Equivalently,
eo' B
1

The function f(z) =e*/(14+¢€*) =1/(1 + e~ %) is called the

logistic function.
.
0.5 ﬁ log % is the
J log-odds ratio.

-6 -4 -2 0 2 4 6

o Larger positive values of 275 = p~ 1.

o Larger negative values of 273 = p ~ 0.
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Logistic regression (cont.)

In summary, we are assuming:
e Y|X = z ~ Bernoulli(p).
e logit(p) = logit(E(Y|X = z)) = 27 3.
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Logistic regression (cont.)

In summary, we are assuming:

e Y|X = z ~ Bernoulli(p).

e logit(p) = logit(E(Y|X = z)) = 27 3.
More generally, one can use a generalized linear model (GLM). A
GLM consists of:

@ A probability distribution for Y| X = z from the exponential

family.
o A linear predictor n = 27 4.
@ A link function g such that g(E(Y|X = x)) = .
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Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y. We typically
estimate the parameter 5 using maximum likelihood.
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Recall: If Y ~ Bernoulli(p), then
PY =y =p'(1-p)',  ye{01}.

6/10



Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y. We typically
estimate the parameter 5 using maximum likelihood.

Recall: If Y ~ Bernoulli(p), then
PY=y)=p/01-p'Y  ye{0,1}.
Thus, L(p) = [Ti—, p¥ (1 — p)' 4.

6/10



Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y. We typically
estimate the parameter 5 using maximum likelihood.

Recall: If Y ~ Bernoulli(p), then
PY=y)=p/01-p'Y  ye{0,1}.
Thus, L(p) = [Ti—, p¥ (1 — p)' 4.
T

Here p = p(;, 8) = — 26. Therefore,
14+e%i
1(8) = [ [ plas, B (1 — plas, B)) .
i=1

6/10



Logistic regression: estimating the parameters

In logistic regression, we are assuming a model for Y. We typically
estimate the parameter 5 using maximum likelihood.

Recall: If Y ~ Bernoulli(p), then
PY=y)=p/01-p'Y  ye{0,1}.
Thus, L(p) = [Ti—, p¥ (1 — p)' 4.
T

Here p = p(;, 8) = — 26. Therefore,
14+e%i
1(8) = [ [ plas, B (1 — plas, B)) .
i=1

Taking the logarithm, we obtain
1B) =Y wilogp(i, B) + (1 — y:) log(1 — p(xs, B))

i=1

= > wilal 8~ log(1+a1'8) — (1 - ) log(1 + ¢ 7)
i=1

n
= [yiaT B —log(1 + e 7).
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Logistic regression: estimating the parameters

Taking the derivative:

T
n o B

8/8] Z [yzxzj xl‘] 1 + ex;j‘ﬁ

=1

Needs to be solved using numerical methods
(e.g. Newton-Raphson).

Logistic regression often performs well in applications.

As before, penalties can be added to regularize the problem or
induce sparsity. For example,

min —(8) + [ ]l

min —1(8) + a Bl
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Logistic regression with more than 2 classes

Suppose now the response can take any of {1,..., K} values.

Can still use logistic regression.

We use the categorical distribution instead of the Bernoulli
distribution.

o P(Y =ilX =) =p, 0<p <1, 05 pi = 1.
@ Each category has its own set of coefficients:
engU)
@ Estimation can be done using maximum likelihood as for the

binary case.
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Multiple classes of data

Other popular approaches to classify data from multiple categories.
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Multiple classes of data

Other popular approaches to classify data from multiple categories.
@ One versus all:(or one versus the rest) Fit the model to separate
each class against the remaining classes. Label a new point x
according to the model for which 273 + 3 is the largest.

)()3()( X)(X)(
X X
*y P oo
aa “[“' <'=‘=. LX)
S &

Need to fit the model K times.
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Multiple classes of data (cont.)

@ One versus one:
@ Train a classifier for each possible pair of classes.
Note: There are (§) = K (K —1)/2 such pairs.
@ Classify a new points according to a majority vote: count the
number of times the new point is assign to a given class, and
pick the class with the largest number.
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Multiple classes of data (cont.)

@ One versus one:
@ Train a classifier for each possible pair of classes.
Note: There are (§) = K (K —1)/2 such pairs.
@ Classify a new points according to a majority vote: count the
number of times the new point is assign to a given class, and
pick the class with the largest number.

2

X x
aa ***1
O:A:/*

Need to fit the model (I;) times (computationally intensive).
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