MATH 567: Mathematical Techniques in Data

Science
Lab 8

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 11, 2017

1/14

We have;

OO"\ w/\ H/\

hw

i
fW.
fw.

i

huslx)

Layer Ly

+1

Layer L, Layer L,

W11 r1+ W1(2)952 + W1(3 T3+ b

21 1’1 + WQ(Q)ZEQ + W2(3 3+ b
e+ Wil wa + Wi g + b

2/14

Recall (cont.)

Layer Ly

+1

Layer L, Layer L,

Vector form:
22 — wWg 4 p@)
a? = f(z)
2B — w@e@ 4 p®2)
hwp = a® = f(z¥).

3/14

Training neural networks

Suppose we have
@ A neural network with s; neurons in layer I (I =1,...,n).

4/14

Training neural networks

Suppose we have

@ A neural network with s; neurons in layer I (I =1,...,n).

@ Observations (z(1),yM), ... (2(m) ¢(™) € Rs1 x R,
We would like to choose W) and b in some optimal way for all
.

4/14

Training neural networks

Suppose we have
@ A neural network with s; neurons in layer I (I =1,...,n).
@ Observations (z(1),yM), ... (2(m) ¢(™) € Rs1 x R,

We would like to choose W) and b in some optimal way for all
.

Let

1
JW,b;z,y) = §th7b(a:)—yH§ (Squared error for one sample).

4/14

Training neural networks

Suppose we have
@ A neural network with s; neurons in layer I (I =1,...,n).
@ Observations (z(1),yM), ... (2(m) ¢(™) € Rs1 x R,

We would like to choose W) and b in some optimal way for all
.

Let

1
JW,b;z,y) = §th7b(a:)—yH§ (Squared error for one sample).
Define

1 m ,X ni—1 s; Si+

1
(W2
i=1 j=1

(average squared error with Ridge penalty).

4/14

Training neural networks

Suppose we have
@ A neural network with s; neurons in layer I (I =1,...,n).
@ Observations (z(1),yM), ... (2(m) ¢(™) € Rs1 x R,

We would like to choose W) and b in some optimal way for all
.

Let

1
JW,b;z,y) = §th7b(a:)—yH§ (Squared error for one sample).

Define
1 & AL)
EZ Woba® D)+ 230> Y (W)
i=1 =1 i=1 j=1
(average squared error with Ridge penalty).
Note:

@ The Ridge penalty prevents overfitting.
@ We do not penalize the bias terms bgl).

4/14

Some remarks

e Can use other loss functions (e.g. for classification).

e Can use other penalties (e.g. 1, elastic net, etc.).

5/14

Some remarks

@ Can use other loss functions (e.g. for classification).

e Can use other penalties (e.g. 1, elastic net, etc.).

@ In classification problems, we choose the labels y € {0, 1} (if
working with sigmoid) or y € {—1,1} (if working with tanh).

@ For regression problems, we scale the output so that y € [0, 1]
(if working with sigmoid) or y € [—1, 1] (if working with tanh).

5/14

Some remarks

e Can use other loss functions (e.g. for classification).

e Can use other penalties (e.g. 1, elastic net, etc.).

@ In classification problems, we choose the labels y € {0,1} (if
working with sigmoid) or y € {—1,1} (if working with tanh).

@ For regression problems, we scale the output so that y € [0, 1]
(if working with sigmoid) or y € [—1, 1] (if working with tanh).

@ We can use gradient descent to minimize J(W,b). Note that

since the function J(W,b) is non-convex, we may only find a
local minimum.

5/14

Some remarks

e Can use other loss functions (e.g. for classification).

e Can use other penalties (e.g. 1, elastic net, etc.).

@ In classification problems, we choose the labels y € {0,1} (if
working with sigmoid) or y € {—1,1} (if working with tanh).

@ For regression problems, we scale the output so that y € [0, 1]
(if working with sigmoid) or y € [—1, 1] (if working with tanh).

@ We can use gradient descent to minimize J(W,b). Note that

since the function J(W,b) is non-convex, we may only find a
local minimum.

@ We need an initial choice for T/VZ@ and bgl). If we initialize all

the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.

5/14

Some remarks

e Can use other loss functions (e.g. for classification).

e Can use other penalties (e.g. 1, elastic net, etc.).

@ In classification problems, we choose the labels y € {0,1} (if
working with sigmoid) or y € {—1,1} (if working with tanh).

@ For regression problems, we scale the output so that y € [0, 1]
(if working with sigmoid) or y € [—1, 1] (if working with tanh).

@ We can use gradient descent to minimize J(W,b). Note that

since the function J(W,b) is non-convex, we may only find a
local minimum.

@ We need an initial choice for Y/VZ@ and bgl). If we initialize all

the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.

@ As a result, we initialize the parameters to a small constant at
random (say, using N(0,€?) for e = 0.01).

5/14

Gradient descent and the backpropagation algorithm

e We update the parameters using a gradient descent as follows:

W Wl —a 0 I (W.0)
ow
ij
b bl — ailJ(W, b).
onlV

)

Here oo > 0 is a parameter (the learning rate).

6/14

Gradient descent and the backpropagation algorithm

e We update the parameters using a gradient descent as follows:

W Wl —a 0 I (W.0)
ow
ij
DS AC 8l J(W,b).
onlV

7
Here oo > 0 is a parameter (the learning rate).

@ The partial derivatives can be cleverly computed using the chain
rule to avoid repeating calculations (backpropagation algorithm).

6/14

Sparse neural networks

Sparse networks can be built by
@ Penalizing coefficients (e.g. using a ¢; penalty).

@ Dropping some of the connections at random (dropout).

Srivastava et al., JMLR 15 (2014).

Useful to prevent overfitting.

Recent work: “One-shot learners” can be used to train models with
a smaller sample size.

7/14

Autoencoders

An autoencoder learns the identity function:
@ Input: unlabeled data.
e Output = input.
@ Idea: limit the number of hidden layers to discover structure in
the data.

@ Learn a compressed representation of the input.

% —

% —
%5 —>

hyys(x)

X —>

X —>

Xg >

Layer L, LayerL,

LayerLy

Source: UFLDL tutorial.

8/14

Example (UFLDL)

@ Train an autoencoder on 10 x 10 images with one hidden layer.

9/14

Example (UFLDL)

@ Train an autoencoder on 10 x 10 images with one hidden layer.

@ Each hidden unit ¢ computes:

100
-1 (o).

j=1

9/14

Example (UFLDL)

@ Train an autoencoder on 10 x 10 images with one hidden layer.

@ Each hidden unit ¢ computes:

Z WDz + b

@ Think of a§2) as some non-linear feature of the input .

9/14

Example (UFLDL)

@ Train an autoencoder on 10 x 10 images with one hidden layer.

@ Each hidden unit ¢ computes:

Z WDz + b

@ Think of a§2) as some non-linear feature of the input .

(2)

Problem: Find z that maximally activates a,” over |z|j2 < 1.

9/14

Example (UFLDL)

@ Train an autoencoder on 10 x 10 images with one hidden layer.

@ Each hidden unit ¢ computes:

Z WDz + b

@ Think of a§2) as some non-linear feature of the input .

(2)

Problem: Find z that maximally activates a,” over |z|j2 < 1.

Claim:

9/14

Example (UFLDL)

@ Train an autoencoder on 10 x 10 images with one hidden layer.

@ Each hidden unit ¢ computes:

Z WDz + b

@ Think of a§2) as some non-linear feature of the input .

(2)

Problem: Find z that maximally activates a,” over |z|j2 < 1.

Claim:

(Hint: Use Cauchy-Schwarz).
2

We can now display the image maximizing a,” for each i.

9/14

Example (cont.)

100 hidden units on 10x10 pixel inputs:

The different hidden units have learned to detect edges at different

A BPAd=NT
Nl AWK TR

T NN
"W Nh T
TP
JIINL= S
= I

HITHJIH

MHI'JNIHE.

positions and orientations in the image.

10/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

11/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

@ For example, images often have similar statistical properties in
different regions in space.

11/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

@ For example, images often have similar statistical properties in
different regions in space.

@ That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

11/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

@ For example, images often have similar statistical properties in
different regions in space.

@ That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

e Can “convolve” the learned features with the larger image.

11/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

@ For example, images often have similar statistical properties in
different regions in space.

@ That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

e Can “convolve” the learned features with the larger image.

Example: 96 x 96 image.

11/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

@ For example, images often have similar statistical properties in
different regions in space.

@ That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

e Can “convolve” the learned features with the larger image.

Example: 96 x 96 image.

@ Learn features on small 8 x 8 patches sampled randomly (e.g.

using a sparse autoencoder).

11/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

@ For example, images often have similar statistical properties in
different regions in space.

@ That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

e Can “convolve” the learned features with the larger image.

Example: 96 x 96 image.

@ Learn features on small 8 x 8 patches sampled randomly (e.g.
using a sparse autoencoder).

@ Run the trained model through all 8 x 8 patches of the image
to get the feature activations.

11/14

Using convolutions

o Idea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

@ For example, images often have similar statistical properties in
different regions in space.

@ That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

e Can “convolve” the learned features with the larger image.

Example: 96 x 96 image.
@ Learn features on small 8 x 8 patches sampled randomly (e.g.
using a sparse autoencoder).
@ Run the trained model through all 8 x 8 patches of the image
to get the feature activations.

1(1({1(0/|0
o|1|1(1(0 4|34
0/0|1/1]1, 2043
0/0|1/1/0, 2(3(4
0l1]1[0]0]
Convolved
Image

Feature source: UFLDL tutorial. 11/14

Pooling features

@ Once can also pool the features obtained via convolution.

12/14

Pooling features

@ Once can also pool the features obtained via convolution.
@ For example, to describe a large image, one natural approach
is to aggregate statistics of these features at various locations.

12/14

Pooling features

@ Once can also pool the features obtained via convolution.

@ For example, to describe a large image, one natural approach
is to aggregate statistics of these features at various locations.

o E.g. compute the mean, max, etc. over different regions.

12/14

Pooling features

@ Once can also pool the features obtained via convolution.

@ For example, to describe a large image, one natural approach
is to aggregate statistics of these features at various locations.

o E.g. compute the mean, max, etc. over different regions.

@ Can lead to more robust features. Can lead to invariant
features.

12/14

Pooling features

@ Once can also pool the features obtained via convolution.

@ For example, to describe a large image, one natural approach
is to aggregate statistics of these features at various locations.

o E.g. compute the mean, max, etc. over different regions.

@ Can lead to more robust features. Can lead to invariant
features.

@ For example, if the pooling regions are contiguous, then the
pooling units will be “translation invariant”, i.e., they won't
change much if objects in the image are undergo a (small)
translation.

12/14

Pooling features

@ Once can also pool the features obtained via convolution.

@ For example, to describe a large image, one natural approach
is to aggregate statistics of these features at various locations.

o E.g. compute the mean, max, etc. over different regions.

@ Can lead to more robust features. Can lead to invariant
features.

@ For example, if the pooling regions are contiguous, then the
pooling units will be “translation invariant”, i.e., they won't
change much if objects in the image are undergo a (small)

translation.
117
. -

Convolved Pooled
feature feature

12/14

We will use the package h2o to train neural networks with R. To
get you started, we will construct a neural network with 1 hidden
layers containing 2 neurons to learn the X OR function:

= O
= OO
O ==

Initialize h2o0
library(h2o)

h2o0.init(nthreads=-1, max_mem_size="2G")
h2o.removeAll() # in case the cluster was
already running

Construct the XOR function

X = t(matrix(c(0,0,0,1,1,0,1,1),2,4))
y = matrix(c(-1,1,1,-1), 4)

train = as.h2o0(cbind(X,y))

13/14

R (cont.)

Training the model:

Train model

Test the model
h2o.predict(model, train)

model <- h2o.deeplearning(x = names(train)[1:2],

y = names(train) [3],
training_frame = train,
activation = "Tanh",
hidden = c(2),
input_dropout_ratio = 0.0,
11 = 0,

epochs = 10000)

Some options you may want to use when building more complicated

models for data:

11 = le-5

activation = "RectifierWithDropout"
input_dropout_ratio = 0.2

14/14

