MATH 567: Introduction to Data Mining and Analysis
 Introduction to Neural networks

Dominique Guillot

Departments of Mathematical Sciences
University of Delavare
April 10, 2017

This lecture is based on the UFLDL tutorial (http://deeplearning.stanford.edu/)

Neuron representation (Source: Wiki).

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).
- Each neuron has a single axon (output).
- Neuron make on average 7,000 synaptic connections.
- Signals are sent via an electrochemical process.
- When a neuron fires, it starts a chain reaction that propagates information.
- There are excitatory and inhibitory synapses.

See izenman (2013) for more deta ils.

Neurons (cont.)

- Our brain learms by changing the strengths of the connections between neurons or by adding or removing such connections.
- Relating brain networks to functions is still a very challenging problem.
- Constructing a "universal" learning machine/algorithm?
- In some sense, no machine learning algorithm is universally better
than any other (Goodfellow et al., "Deep learning"):
Theorem: (No free lunch theorem) (Wolpert, 1996) Averaged over all possible data generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points.
- Still, there is hope to construct an algorithm that performs well at many tasks (e.g. the human brain).
Neural networks:
- Inspired by neuroscience (probably very far from real neurons).
- Use multiple layers of neurons to represent data.
- Very popular in computer vision, natural language processing, and many other fields.
- Today, neural network models are often called deep learning.

Neural networks

Single neuron model:

Sanice: UFLDLT**ial
Input: x_{1}, x_{2}, x_{3} (and +1 intercept).
Output: $h_{W, b}(x)=f\left(W^{T} x\right)=f\left(W_{1} x_{1}+W_{2} x_{2}+W_{3} x_{3}+b\right)$,
where f is the sigmoid function:

$$
f(x)=\frac{1}{1+e^{-x}}
$$

Other common choice for f :

$$
f(x)=\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

The function f acts as an activation function

Idea: Depending on the input of the neuron and the strength of the links, the neuron "fires" or not.

Notation

- $n_{l}=$ number of layers.
- We denote the layers by $L_{1}, \ldots, L_{n_{i}}$, so $L_{1}=$ input layer and $L_{n i}=$ output layer.
- $W_{i j}^{(l)}=$ weight associated with the connection between unit j in layer l, and unit i in layer $l+1$. (Note the order of the indices.)
- $b_{i}^{(l)}$ is the bias associated with unit i in layer $l+1$.

In above example: $(W, b)=\left(W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}\right)$. Here
$W^{(1)} \in \mathbb{R}^{3 \times 3}, W^{(2)} \in \mathbb{R}^{1 \times 3}, b^{(1)} \in \mathbb{R}^{3}, b^{(2)} \in \mathbb{R}$.

A neural networks model is obtained by hooking together many neurons so that the output of one neuron becomes the input of another neuron.

Note: Each layer includes an intercept " +1 " (or bias unit)

- Leftmost layer $=$ input layer.
- Rightmost layer $=$ output layer.
- Middle layers = hidden layers (not observed).

We will let n_{l} denote the number of layers in our model ($n_{l}=3$
in the above example).

Activation

- We denote by $a_{i}^{(l)}$ the activation of unit i in layer l.
- We let $a_{i}^{(1)}=x_{i}$ (input).

We have:

$$
\begin{aligned}
a_{1}^{(2)} & =f\left(W_{11}^{(1)} x_{1}+W_{12}^{(1)} x_{2}+W_{13}^{(1)} x_{3}+b_{1}^{(1)}\right) \\
a_{2}^{(2)} & =f\left(W_{21}^{(1)} x_{1}+W_{22}^{(1)} x_{2}+W_{23}^{(1)} x_{3}+b_{2}^{(1)}\right) \\
a_{3}^{(2)} & =f\left(W_{31}^{(1)} x_{1}+W_{32}^{(1)} x_{2}+W_{33}^{(1)} x_{3}+b_{3}^{(1)}\right) \\
h_{W, b} & =a_{1}^{(3)}=f\left(W_{11}^{(2)} a_{1}^{(2)}+W_{12}^{(2)} a_{2}^{(2)}+W_{13}^{(2)} a_{3}^{(2)}+b_{1}^{(2)}\right)
\end{aligned}
$$

Compact notation

- In what follows, we will let $z_{i}^{(l)}=$ total weighted sum of inputs to unit i in layer l (including the bias term):

$$
z_{i}^{(l)}:=\sum_{j} W_{i j}^{(l-1)} a_{j}^{(l-1)}+b_{i}^{(l-1)} \quad(l \geq 2) .
$$

- Note that that $a_{i}^{(l)}=f\left(z_{i}^{(l)}\right)$.
- For example:

$$
z_{i}^{(2)}=\sum_{j=1}^{3} W_{i j}^{(1)} x_{j}+b_{i}^{(1)} \quad i=1,2,3 .
$$

We extend f elementwise: $f\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\left[f\left(v_{1}\right), f\left(v_{2}\right), f\left(v_{3}\right)\right]$.
Using the above notation, we have:

$$
\begin{aligned}
z^{(2)} & =W^{(1)} x+b^{(1)} \\
a^{(2)} & =f\left(z^{(2)}\right) \\
z^{(3)} & =W^{(2)} a^{(2)}+b^{(2)} \\
h_{W, b} & =a^{(3)}=f\left(z^{(3)}\right) .
\end{aligned}
$$

The previous process is called the forward propagation step.

- Recall that we defined $a^{(1)}=x$ (the input).
- The forward propagation can therefore be written as:

$$
\begin{aligned}
& z^{(l+1)}=W^{(l)} a^{(l)}+b^{(l)} \\
& a^{(l+1)}=f\left(z^{(l+1)}\right) .
\end{aligned}
$$

Using matrix-vector operations, we can take advantage of fast linear algebra routines to quickly perform calculations in our network.

- Can use different architectures (i.e., pattens of connectivity between neurons).
- Typically, we use multiple densely connected layers.
- In that case, we obtain a feedforward neural network (no directed loops or cycles).

Multiple outputs

Neural networks may also have multiple outputs:

- To train this network, we need observations $\left(x^{(i)}, y^{(i)}\right)$ with $y^{(i)} \in \mathbb{R}^{2}$.
- Useful for applications where the output is multivariate (e.g. medical diagnosis application where output is whether or not a patient has a list of diseases).
- Useful to encode or compress information.

The universal approximation theorem

- What kind of functions can we approximate with neural networks?
- The following result shows that neural networks have a
"universal" approximation property.
Theorem: (Cybenko, 1989) A single layer feedforward neural network can uniformly approximate any continuous function defined on a compact subset K of \mathbb{R}^{n}.
- A subset of \mathbb{R}^{n} is compact if it is closed ($x_{n} \in K$ and $x_{n} \rightarrow x$ implies $x \in K$) and bounded ($\|x\| \leq C$ for all $x \in K$).
Example: Let f be any continuous function defined on the unit cube $[0,1]^{3}$. Then for every $\epsilon>0$, there exists a feedforward neural network $f_{W, b}$ with one layer such that

$$
\left|f(x)-f_{W b}(x)\right|<\epsilon \quad \forall x \in[0,1]^{3} .
$$

