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“This lecture is based on U. von Luxburg, A Tatoral on Spectral Clustering. Statisics and Computing, 17 (4), 2007

Example

Let us try to cluster the following graph:
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We have:

v = (~0.3825277, 02470177,

77,0.3525277, 0.982527)

e

Overview of spectral clustering:
@ Construct a similarity matrix measuring the similarity of pairs
of objects (e.g. si; = exp(— |l — a;]2/(202))).
@ Use the similarity matrix to construct a (weighted or
unweighted) graph

© Compute
graph Laplacian

L=D-W,

of the (normalized or lized)

Loy = DV2LD™V2,

@ Construct a matrix containing the first K eigenvectors of L or
Leym as columns.
@ Each row identifies a vertex of the graph to a point in R¥

GEp

@ Cluster those points using the K-means algorithm.
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The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:
Q Forany feR™

FLp =3 wlh

ig=1

@ L is symmetric and positive semidefinite.
@ 0 is an eigenvalue of L with associated constant eigenvector 1
Proof: To prove (1),

JTLf = [TDf = [TW[=3"dif? = > wiifif;
= ;

; (Z Aiff =2 wilidi + Zdjff)
{ b =

=5 3wyl 1)
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(2) follows from (1). (3) is easy. o
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The unnormali

Proposition: Let G be an undirected graph with non-negative
weights. Then
@ The multiplicity k of the eigenvalue 0 of L equals the number
of connected components Ay, ..., Ay in the graph.

Proposition: The normalized Laplacians satisfy the following
properties:
Q For every f € R", we have
@ The eigenspace of eigenvalue 0 is spanned by the indicator i It ; 5 2
vectors 1, ..., Ly, of those components. FT Ligmf 3 3wy (\/7 - ﬁ)
Proof: If f is an eigenvector associated to A = 0, then =1 ! ?

@ ) is an eigenvalue of Ly, with eigenvector u if and only if A is

0=fTLf =Y wy(fi- f;)% an eigenvalue of Lgym with eigenvector w = D'/?u
=1 © s an eigenvalue of Ly, with eigenvector u if and only if A
It follows that f; = f; whenever w;; > 0. Thus f is constant on and u solve the generalized eigenproblem Lu = ADu.
the connected components of . We conclude that the eigenspace Proof: The proof of (1) is similar to the proof of the analogous
of 0 s contained in span(Ly,.....14,). Conversely, it is not hard result for the unnormalized Laplacian. (2) and (3) follow easily by
to see that each 14, is an eigenvector associated to 0 (write L in using appropriate rescalings.

block diagonal form). [}

sis o8

o G graph with (weighted)
adjacency matrix IV = (w;;)

Proposition: Let G be an undirected graph with non-negative o We define:
weights. Then
@ The multiplicity k of the eigenvalue 0 of both Lyyy, and Ly, WA B) = Y wy
equals the number of connected components A;. ..., Ap in i€AjeB
the graph.

o |A] = number of vertices in A.
@ For Ly, the eigenspace of eigenvalue 0 is spanned by the

vol(A
indicator vectors 14,1 =1,...,k @ vol(

Yieads

Given a partition Aj,..., 4 Ay of the vertices of G, we let

© For Ly,um, the elgenspace of eigenvalue 0 is spanned by the
vectors D214, i =1,... k.

Proof: Similar to the proof of the analogous result for the

unnormalized Laplacian.

The min-cut problem consists of solving
min cut(Ay,.

AinAj= Vids
e /e




Graph cuts (cont.)

o The min-cut problem can be solved efficiently when k = 2 (see
Stoer and Wagner 1997)

@ In practice it often does not lead to satisfactory partitions

o In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph

& We would like clusters to have a reasonably large number of
points.
o We therefore modify the min-cut problem to enforce such
constraints.
o

Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.
Strategy:
© Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

@ Relax/remove the constraints.
RatioCut with k = 2: solve

min RatioCut(A, )
Given A C V, let f € R" be given by

=
VA4 ifvea
7\/\_4\/\1\ if v g A

e

Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:
O RatioCut (Hagen and Kahng, 1992)
> cut(A, ;)
Al

=1

RatioCut(A;,

@ Normalized cut (Shi and Malik, 2000)

Neut(4y,

EW(ALA) o ent(
vol(A;) Z; vol(A7)

o Note: both objective functions take larger values when the
clusters A; are “small”.

@ Resulting clusters are more “balanced”.

o However, the resulting problems are NP hard - see Wagner and
Wagner (1993)
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Relaxing RatioCut

Let L = D — W be the (unnormalized) Laplacian of G. Then

FTLF= 23wy h)
2

P Y

i€djea

I AL )]
=i 2( [

= |V| - RatioCut(A, A).

since |A| + [A] = [V], and (A,
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o We showed
fTLf = % Z wii(fi — £;)* = |V| - RatioCut (A, A)
=
@ Moreover, note that
[@

WV \A\’m'

Thus f L 1.

Thus, we have showed that the Ratio-Cut problem is equivalent to
min fTLf
subject to f L 1, || f]| = v/, f; defined as above

1718

o Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

s

subject to f L L, ||f]| = v/n.
is an eigenvector of L corresponding to the second eigenvalue
o Clearly, if f is the solution of the problem, then

F7LJ < yin RatioCut(A, )
@ How do we get the clusters from f?

e We could set
{neﬁ >0
vwed iffi<o.
@ More generally, we cluster the coordinates of f using K-means.
This is the unnormalized spectral clustering algorithm for
k=2

@ The above process can be generalized to k > 2 clusters. w5

We have:

.
min L,
Acv L

Relaxing RatioCut (cont.)

subject to f L 1,||f| = v/, fi defined as above.

@ This is a discrete optimization problem since the entries of f

can only take two values: \/[711/|4] and —/|A|/[7

The problem is

NP hard

The natural relaxation of the problem is to remove the
discreteness condition on f and solve

min fTLf

fern

subject to f L 1, = v/

malized spe

tr.

The unnormalized spectral clustering algorithm

Unnormalized spectral ch

« Cluster the points (1

Output: Clusters A,

¥ mavrix S
milarity graph by ono of the ways described in Section 2. lLet I¥

A with A, = |

. musber k of clusters to construct

s of L.
the matrix containing the vactors uy,....u; a8 colusns.

* b the vector corresponding to the i-th Tov of [
Joct in B wich

the k-means algorithm into clusters

cc)

E——
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@ Relaxing the RatioCut leads to unnormalized spectral clustering,
@ By relaxing the Ncut problem, we obtain the Normalized
spectral clustering algorithm of Shi and Malik (2000)

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity satrix § € RY", nusber k of clusters to construct.
a similarity graph by ons of the vays described in Section 2. Lat I

s of the gone

©be the matrix containing the vectors u,...,u s colums.
N, lot y, € R b the vector corrasponding to the i-th row of U
Caoana aigorithe inte clusters

¢
Output: Clusters Au,..., A with 4, = {jly € G}
Sourc: von Lsbarg, 207

o Note: The solutions of Lu = ADu are the eigenvectors of Ly,
See von Luxburg (2007) for details

e

The normall

@ Another popular variant of the spectral clustering algorithm was
provided by Ng. Jordan, and Weiss (2002)

o The algorithm uses Ly instead of L (unnormalized clustering)
or Ly, (Shi and Malik's normalized clustering).

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

opat: Sistlarisy maerix €KV, muber | of clusers so consruct

o Const {larity graph by one of the vays described in Section 2. Lat I
bo 1t veighted adjacency satrix

 Conpute the normalized Laplacian L,
« Compute the first k eigenvectors u,

U € R*F b the matrix containing 4 S —
m tho matrix T € R from by normalsing the rows o norm 1.

#"bo the vactor corresponding to the i~th row of T
« Clustar the points (4)i-s... vith the k-neans algoritha nto clusters Ci,...,Ci
Ouepu: Clusters A1, 4 ¥ith A= (1 1y € Cl}

Soees von i, 2.

See von Luxburg (2007) for details
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