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Spectral clustering: overview

Overview of spectral clustering:
1 Construct a similarity matrix measuring the similarity of pairs

of objects (e.g. sij = exp(−‖xi − xj‖2/(2σ2))).
2 Use the similarity matrix to construct a (weighted or

unweighted) graph.
3 Compute eigenvectors of the (normalized or unnormalized)

graph Laplacian:

L = D −W, Lsym = D−1/2LD−1/2.

4 Construct a matrix containing the �rst K eigenvectors of L or
Lsym as columns.

5 Each row identi�es a vertex of the graph to a point in RK .

6 Cluster those points using the K-means algorithm.
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Example

Let us try to cluster the following graph:

A =



0 1 1 1 0 0 0 0
1 0 1 1 1 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0


, L =



3 −1 −1 −1 0 0 0 0
−1 4 −1 −1 −1 0 0 0
−1 −1 3 −1 0 0 0 0
−1 −1 −1 3 0 0 0 0
0 −1 0 0 4 −1 −1 −1
0 0 0 0 −1 3 −1 −1
0 0 0 0 −1 −1 3 −1
0 0 0 0 −1 −1 −1 3


We have:

v2 = (−0.3825277,−0.2470177,−0.3825277,−0.3825277, 0.2470177, 0.3825277, 0.3825277, 0.3825277)
T

.
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The unnormalized Laplacian

Proposition: The matrix L satis�es the following properties:
1 For any f ∈ Rn:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2.

2 L is symmetric and positive semide�nite.
3 0 is an eigenvalue of L with associated constant eigenvector 1.

Proof: To prove (1),

fTLf = fTDf − fTWf =
n∑

i=1

dif
2
i −

n∑
i,j=1

wijfifj

=
1

2

 n∑
i=1

dif
2
i − 2

n∑
i,j=1

wijfifj +

n∑
j=1

djf
2
j


=

1

2

n∑
i,j=1

wij(fi − fj)2.

(2) follows from (1). (3) is easy. 4/18



The unnormalized Laplacian (cont.)

Proposition: Let G be an undirected graph with non-negative
weights. Then:

1 The multiplicity k of the eigenvalue 0 of L equals the number
of connected components A1, . . . , Ak in the graph.

2 The eigenspace of eigenvalue 0 is spanned by the indicator
vectors 1A1 , . . . ,1Ak

of those components.

Proof: If f is an eigenvector associated to λ = 0, then

0 = fTLf =
n∑

i,j=1

wij(fi − fj)2.

It follows that fi = fj whenever wij > 0. Thus f is constant on
the connected components of G. We conclude that the eigenspace
of 0 is contained in span(1A1 , . . . ,1Ak

). Conversely, it is not hard
to see that each 1Ai is an eigenvector associated to 0 (write L in
block diagonal form).
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The normalized Laplacians

Proposition: The normalized Laplacians satisfy the following
properties:

1 For every f ∈ Rn, we have

fTLsymf =
1

2

n∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

.

2 λ is an eigenvalue of Lrw with eigenvector u if and only if λ is
an eigenvalue of Lsym with eigenvector w = D1/2u.

3 λ is an eigenvalue of Lrw with eigenvector u if and only if λ
and u solve the generalized eigenproblem Lu = λDu.

Proof: The proof of (1) is similar to the proof of the analogous
result for the unnormalized Laplacian. (2) and (3) follow easily by
using appropriate rescalings.
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The normalized Laplacians (cont.)

Proposition: Let G be an undirected graph with non-negative
weights. Then:

1 The multiplicity k of the eigenvalue 0 of both Lsym and Lrw
equals the number of connected components A1, . . . , Ak in
the graph.

2 For Lrw, the eigenspace of eigenvalue 0 is spanned by the
indicator vectors 1Ai , i = 1, . . . , k.

3 For Lsym, the eigenspace of eigenvalue 0 is spanned by the
vectors D1/2

1Ai , i = 1, . . . , k.

Proof: Similar to the proof of the analogous result for the
unnormalized Laplacian.
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Graph cuts

G graph with (weighted)
adjacency matrix W = (wij).

We de�ne:

W (A,B) :=
∑

i∈A,j∈B
wij .

|A| := number of vertices in A.

vol(A) :=
∑

i∈A di.

Given a partition A1, . . . , Ak of the vertices of G, we let

cut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai).

The min-cut problem consists of solving:

min
V=A1∪···∪Ak
Ai∩Aj=∅ ∀i 6=j

cut(A1, . . . , Ak).
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Graph cuts (cont.)

The min-cut problem can be solved e�ciently when k = 2 (see
Stoer and Wagner 1997).

In practice it often does not lead to satisfactory partitions.

In many cases, the solution of min-cut simply separates one
individual vertex from the rest of the graph.

We would like clusters to have a reasonably large number of
points.

We therefore modify the min-cut problem to enforce such
constraints.
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Balanced cuts

The two most common objective functions that are used as a
replacement to the min-cut objective are:

1 RatioCut (Hagen and Kahng, 1992):

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

cut(Ai, Ai)

|Ai|
.

2 Normalized cut (Shi and Malik, 2000):

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
=

k∑
i=1

cut(Ai, Ai)

vol(Ai)
.

Note: both objective functions take larger values when the
clusters Ai are �small�.

Resulting clusters are more �balanced�.

However, the resulting problems are NP hard - see Wagner and
Wagner (1993).
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Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the
Normalized cut problems.

Strategy:

1 Express the original problem as a linear algebra problem
involving discrete/combinatorial constraints.

2 Relax/remove the constraints.

RatioCut with k = 2: solve

min
A⊂V

RatioCut(A,A).

Given A ⊂ V , let f ∈ Rn be given by

fi :=


√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi 6∈ A.
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Relaxing RatioCut

Let L = D −W be the (unnormalized) Laplacian of G. Then

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2

=
1

2

∑
i∈A,j∈A

wij

√ |A|
|A|

+

√
|A|
|A|

2

+
1

2

∑
i∈A,j∈A

wij

−√ |A|
|A|
−

√
|A|
|A|

2

=W (A,A)

(
2 +
|A|
|A|

+
|A|
|A|

)
=W (A,A)

(
|A|+ |A|
|A|

+
|A|+ |A|
|A|

)
= |V | · 1

2

(
W (A,A)

|A|
+
W (A,A)

|A|

)
= |V | · RatioCut(A,A).

since |A|+ |A| = |V |, and W (A,A) =W (A,A).
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Relaxing RatioCut (cont.)

We showed:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2 = |V | · RatioCut(A,A).

Moreover, note that

n∑
i=1

fi =
∑
i∈A

√
|A|
|A|
−
∑
i∈A

√
|A|
|A|

= |A| ·

√
|A|
|A|
− |A| ·

√
|A|
|A|

= 0.

Thus f ⊥ 1.

Finally,

‖f‖22 =
n∑

i=1

f2i = |A| · |A|
|A|

+ |A| · |A|
|A|

= |V | = n.

Thus, we have showed that the Ratio-Cut problem is equivalent to

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.
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Relaxing RatioCut (cont.)

We have:

min
A⊂V

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n, fi de�ned as above.

This is a discrete optimization problem since the entries of f

can only take two values:
√
|A|/|A| and −

√
|A|/|A|.

The problem is NP hard.

The natural relaxation of the problem is to remove the

discreteness condition on f and solve

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.
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Relaxing RatioCut (cont.)

Using properties of the Rayleigh quotient, it is not hard to show
that the solution of

min
f∈Rn

fTLf

subject to f ⊥ 1, ‖f‖ =
√
n.

is an eigenvector of L corresponding to the second eigenvalue.

Clearly, if f̃ is the solution of the problem, then

f̃TLf̃ ≤ min
A⊂V

RatioCut(A,A).

How do we get the clusters from f̃?
We could set {

vi ∈ A if fi ≥ 0

vi ∈ A if fi < 0.

More generally, we cluster the coordinates of f using K-means.

This is the unnormalized spectral clustering algorithm for
k = 2.

The above process can be generalized to k ≥ 2 clusters.
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Unnormalized spectral clustering: summary

The unnormalized spectral clustering algorithm:

Source: von Luxburg, 2007.
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Normalized spectral clustering

Relaxing the RatioCut leads to unnormalized spectral clustering.
By relaxing the Ncut problem, we obtain the Normalized

spectral clustering algorithm of Shi and Malik (2000).

Source: von Luxburg, 2007.

Note: The solutions of Lu = λDu are the eigenvectors of Lrw.

See von Luxburg (2007) for details.
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The normalized clustering algorithm of Ng et al.

Another popular variant of the spectral clustering algorithm was
provided by Ng, Jordan, and Weiss (2002).

The algorithm uses Lsym instead of L (unnormalized clustering)
or Lrw (Shi and Malik's normalized clustering).

Source: von Luxburg, 2007.

See von Luxburg (2007) for details.
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