MATH 567: Mathematical Techniques in Data Science Linear Regression: old and new

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 13, 2017

Linear Regression: old and new

- Typical problem: we are given n observations of variables X₁,..., X_p and Y.
- Goal: Use X1,..., Xp to try to predict Y.
- Example: Cars data compiled using Kelley Blue Book

(n = 805, p = 11).

Price		Make	Undel	Trim	Dipp	Cylinder	Liter		Dogg	On	ter.	Sound		Leafter	
17214 000		Buick	Cereary					21		4		1	- 1		1
17542-036	90.05	Baick	CHERY	Sedas 40	Sedan			3.1		4		1	1		•
16235.648	13329	Belck	Century	Sedan 40	Sedan			3.1		4		1			
16005.913	16340	Outck	Century	Sedan 40	Sedan			2.1		4		1	- 0		
20229.17	19830	Buick	Conterry	Sedan 40	Sedan			2.1		4		1	- 0		
19709-053	222.9	Balch	Cereary	Sedan 40	Sedan			3.1		4		1			
15230	22576	Beick.	Century	Sedan 40	Sedan			3.1		4		1			÷
15048.042	22964	Buick	Century	Sedan 40	Sedan			21		4		1	- 1		2
14992-094	24023	Baick	CHERY	Sedas 40				3.1		4		1			1
15295.018	27325	Belck	Century	Sedan 40	Sedan			3.1		4		1			
21005-052	10237	Buick	LACTER	CX Sedar	Sedan			2.0		4		1	- 0		
20538-008	15006	Buick	LACIDESE	CX Sedan	Sedan			24		4		1	- 1		
20512 094	16633	Balch	Lacrosse	CX Sedar	Sedan		<u> </u>	3.6		4		1			
19904-159	19000	Beick	Lacrone	CX Sedar	Sedan		(3.6		4		1	- 1		1
19774.249	22256	Buick	LACIDERS	CX Sedar	Sedan			24		4		1	- 1		1
18344166	23316	Batch	LACENSE	CX Sedan	Sedan			34		4		1			

- Find a linear model $Y = \beta_1 X_1 + \cdots + \beta_p X_p$.
- . In the example, we want:

price = $\beta_1 \cdot \text{mileage} + \beta_2 \cdot \text{cylinder} + \dots$

1/14

Linear regression: classical setting

p = nb. of variables, n = nb. of observations.

Classical setting:

- n ≫ p (n much larger than p). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include transformations of variables.
- E.g.

$$X_{p+1} = X_1^2, X_{p+2} = X_2^2, ...$$

- Note: adding transformed variables can increase p significantly.
- A complex model requires a lot of observations.
- Trade-off between complexity and interpretability.

Modern setting:

- ullet In modern problems, it is often the case that $n \ll p$.
- Requires supplementary assumptions (e.g. sparsity)
- Can still build good models with very few observations.

Classical setting

Idea:

$$C \in \mathbb{R}^{n \times 1}$$
 $X \in \mathbb{R}^{n \times p}$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{pmatrix} \qquad X = \begin{pmatrix} | & | & \cdots & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_p \\ | & | & \cdots & | \end{pmatrix},$$

where $\mathbf{x_1}, \ldots, \mathbf{x_p} \in \mathbb{R}^{n \times 1}$ are the observations of X_1, \ldots, X_p .

• We want $Y = \beta_1 X_1 + \dots + \beta_p X_p$.

v

• Equivalent to solving

$$Y = X\beta$$
 $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}$

2714

Classical setting (cont.)

We need to solve $Y = X\beta$.

- In general, the system has no solution $(n \gg p)$ or infinitely many solutions $(n \ll p)$.
- A popular approach is to solve the system in the least squares sense:

$$\beta = \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}} ||Y - X\beta||^{2}$$

How do we compute the solution?
Calculus approach:

$$\begin{split} 0 &= \frac{\partial}{\partial \beta_i} \|Y - X\beta\|^2 = \frac{\partial}{\partial \beta_k} \sum_{k=1}^{n} (y_k - X_{k1}\beta_1 - X_{k2}\beta_2 - \cdots - X_{kp}\beta_p)^2 \\ &= 2\sum_{k=1}^{n} (y_k - X_{k1}\beta_1 - X_{k2}\beta_2 - \cdots - X_{kp}\beta_p) \times (-X_{ki})^2 \\ \text{Therefore,} \end{split}$$

$$\sum_{k=1}^{n} X_{ki} (X_{k1}\beta_1 + X_{k2}\beta_2 + \dots + X_{kp}\beta_p) = \sum_{k=1}^{n} X_{ki} y_k$$

\$/14

Calculus approach (cont.)

Now

$$\sum_{k=1}^{n} X_{ki}(X_{k1}\beta_1 + X_{k2}\beta_2 + \dots + X_{kp}\beta_p) = \sum_{k=1}^{n} X_{ki}y_k \qquad i = 1, \dots, p,$$

is equivalent to:

$$X^T X \beta = X^T y$$
 (Normal equations).

• If $X^T X$ is invertible, then

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

is the unique minimum of $\|Y-X\beta\|^2.$ \bullet Proved by computing the Hessian matrix:

$$\frac{\partial^2}{\partial \beta_i \beta_j} \|Y - X\beta\|^2 = 2X^T X.$$

6/14

Linear algebra approach

Want to solve $Y = X\beta$. Linear algebra approach: Recall: If $V \subset \mathbb{R}^n$ is a subspace and $w \notin V$, then the best approximation of w be a vector in V is

 $\operatorname{proj}_V(w)$.

"Best" in the sense that:

Note:

$$||w - \operatorname{proj}_{V}(w)|| \le ||w - v|| \quad \forall v \in V.$$

• If $Y \not\in \operatorname{col}(X)$, then the best approximation of Y by a vector in $\operatorname{col}(X)$ is

$$\operatorname{proj}_{\operatorname{col}(X)}(Y).$$

Linear algebra approach (cont.)

$$\begin{split} & \text{So} \qquad \|Y - \operatorname{proj}_{\operatorname{cal}(X)}(Y)\| \leq \|Y - X\beta\| \qquad \forall \beta \in \mathbb{R}^p. \end{split}$$
 Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{\mathfrak{m}|(X)}(Y)$$

(Note: this system always has a solution.) With a little more work, we can find an explicit solution:

$$Y - X\hat{\beta} = Y - \operatorname{proj}_{\operatorname{col}(X)}(Y) = \operatorname{proj}_{\operatorname{col}(X)^{\perp}}(Y).$$

Recall Thus,

 $\operatorname{col}(X)^{\perp} = \operatorname{null}(X^T).$

$$Y - X\hat{\beta} = \operatorname{proj}_{\operatorname{null}(X^T)}(Y) \in \operatorname{null}(X^T).$$

That implies:

 $X^T(Y - X\hat{\beta}) = 0.$

Equivalently,

 $X^T X \hat{\beta} = X^T Y$ (Normal equations).

The least squares theorem

Theorem (Least squares theorem)

Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. Then

- $\textbf{0} \ Ax = b \ \text{always has a least squares solution } \hat{x}.$
- A vector x̂ is a least squares solution iff it satisfies the normal equations

$$A^T A \hat{x} = A^T b$$

 $\hat{x} = (A^T A)^{-1} A^T b.$

In R:

```
model <- lm(Y \sim X_1 + X_2 + \cdots + X_p).
```

9/14

The coefficient of determination

 The coefficient of determination, called "R squared" and denoted R²:

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}.$$

- Often used to measure the quality of a linear model.
- In some sense, the R² measures "how much better" is the prediction, compared to a constant prediction equal to the average of the y_is.
- In R: sm\$r.squared. (As above, sm <- summary(model)).
- In a linear model with an intercept, R² equals the square of the correlation coefficient between the observed Y and the predicted values Ŷ.
- \bullet A model with a R^2 close to 1 fits the data well.

Measuring the fit of a linear model

How good is our linear model?

• We examine the mean squared error:

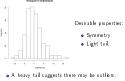
$$M SE(\hat{\beta}) = \frac{1}{n} ||y - X\hat{\beta}||^2 = \frac{1}{n} \sum_{k=1}^{n} (y_i - \hat{y}_i)^2.$$

 Example: model <- lm(AutoSmpg ⁻ AutoShorsepower + AutoSweight) sm <- summary(model) mean(smStresiduals²)
The MSE

10/14

Measuring the fit of a linear model (cont.)

We can examine the distribution of the residuals: hist (sm\$residuals)



 \bullet C an use transformations such as $\log, \sqrt{\cdot},$ or 1/x to improve the fit.

Measuring the fit of a linear model (cont.)

P btting the residuals as a function of the mpg (or fitted values), we immediately observe some patterns.

Outliers? Separate categories of cars?

Improving the model

- Add more variables to the model.
- Select the best variables to include.
- Use transformations.
- Separate cars into categories.
- etc.

For example, let us fit a model only for cars with a mpg less than 25:

13/14