MATH 567: Mathematical Techniques in Data Science
 Linear Regression: old and new

Dominique Guillot
Departments of Mathematical Sciences
University of Delaware

February 13, 2017

Linear regression: classical setting

$p=\mathrm{nb}$. of variables, $n=\mathrm{nb}$. of observations.

Classical setting:

- $n \gg p$ (n much larger than p). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include transformations of variables.
- E.g.

$$
X_{p+1}=X_{1}^{2}, X_{p+2}=X_{2}^{2}, \ldots
$$

- Note: adding transformed variables can increase p significantly.
- A complex model requires a lot of observations.
- Trade-off between complexity and interpretability.

Modern setting:

- In modern problems, it is often the case that $n \ll p$.
- Requires supplementary assumptions (e.g. sparsity).
- Can still build good models with very few observations.

Linear Regression: old and new

- Typical problem: we are given n observations of variables X_{1}, \ldots, X_{p} and Y.
- Goal: Use X_{1}, \ldots, X_{p} to try to predict Y.
- Example: Cars data compiled using Kelley Blue Book ($n=805, p=11$).

- Find a linear model $Y=\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}$.
- In the example, we want:
price $=\beta_{1} \cdot$ mileage $+\beta_{2} \cdot$ cylinder $+\ldots$

Classical setting

Idea:

$$
\begin{gathered}
Y \in \mathbb{R}^{n \times 1} \quad X \in \mathbb{R}^{n \times p} \\
Y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right) \quad X=\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{\mathrm{p}} \\
\mid & \mid & \ldots & \mid
\end{array}\right),
\end{gathered}
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{p}} \in \mathbb{R}^{n \times 1}$ are the observations of $X_{1}, \ldots X_{p}$.

- We want $Y=\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}$.
- Equivalent to solving

$$
Y=X \beta \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{p}
\end{array}\right)
$$

Classical setting (cont.)

Calculus approach (cont.)

Now
$\sum_{k=1}^{n} X_{k i}\left(X_{k 1} \beta_{1}+X_{k 2} \beta_{2}+\cdots+X_{k p} \beta_{p}\right)=\sum_{k=1}^{n} X_{k i} y_{k} \quad i=1, \ldots, p$,
is equivalent to:

$$
X^{T} X \beta=X^{T} y \quad \text { (Normal equations). }
$$

- If $X^{T} X$ is invertible, then

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

is the unique minimum of $\|Y-X \beta\|^{2}$.

- Proved by computing the Hessian matrix:

$$
\frac{\partial^{2}}{\partial \beta_{i} \beta_{j}}\|Y-X \beta\|^{2}=2 X^{T} X
$$

Linear algebra approach

Want to solve $Y=X \beta$.
Linear algebra approach: Recall: If $V \subset \mathbb{R}^{n}$ is a subspace and $w \notin V$, then the best approximation of w be a vector in V is

$$
\operatorname{proj}_{V}(w) .
$$

"Best" in the sense that:

$$
\left\|w-\operatorname{proj}_{V}(w)\right\| \leq\|w-v\| \quad \forall v \in V .
$$

- Note:

- If $Y \notin \operatorname{col}(X)$, then the best approximation of Y by a vector in $\operatorname{col}(X)$ is

$$
\operatorname{proj}_{\operatorname{col}(X)}(Y) .
$$

Linear algebra approach (cont.)

So

$$
\left\|Y-\operatorname{proj}_{\operatorname{col}(X)}(Y)\right\| \leq\|Y-X \beta\| \quad \forall \beta \in \mathbb{R}^{p}
$$

Therefore, to find $\hat{\beta}$, we solve

$$
X \hat{\beta}=\operatorname{proj}_{\operatorname{col}(X)}(Y)
$$

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

$$
Y-X \hat{\beta}=Y-\operatorname{proj}_{\infty 01(X)}(Y)=\operatorname{proj}_{\infty 0 l(X)^{\perp}}(Y) .
$$

Recall
Thus,
$\operatorname{col}(X)^{\perp}=\operatorname{null}\left(X^{T}\right)$.

That implies:
Equivalently,

$$
X^{T}(Y-X \hat{\beta})=0
$$

$X^{T} X \hat{\beta}=X^{T} Y \quad$ (Normal equations).

Theorem (Least squares theorem)
 Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{n}$. Then
 (1) $A x=b$ always has a least squares solution \hat{x}.

- A vector \hat{x} is a least squares solution iff it satisfies the normal equations

$$
A^{T} A \hat{x}=A^{T} b
$$

(3) \hat{x} is unique \Leftrightarrow the columns of A are linearly independent \Leftrightarrow $A^{T} A$ is invertible. In that case, the unique least squares solution is given by

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b .
$$

In R:

$$
\text { model }<-\operatorname{lm}\left(Y \sim X_{1}+X_{2}+\cdots+X_{p}\right)
$$

Measuring the fit of a linear model (cont.)

We can examine the distribution of the residuals:
hist (sm\$residuals)

Desirable properties:

- Symmetry
- Light tail.
- A heavy tail suggests there may be outliers.
- Can use transformations such as $\log , \sqrt{ }$, or $1 / x$ to improve the fit.

Plotting the residuals as a function of the mpg (or fitted values), we immediately observe some patterns.

Outliers? Separate categories of cars?

Improving the model

- Add more variables to the model.
- Select the best variables to include.
- Use transformations.
- Separate cars into categories.
- etc.

For example, let us fit a model only for cars with a mpg less than 25 :

