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Shrinkage methods

Recall: least-squares regression:

β̂LS = argmin
β∈Rp

‖y −Xβ‖22.

Penalizing the coe�cients:

Want to restrict the number or the size of the regression
coe�cients.
Add a penalty (or �price to pay�) for including a nonzero
coe�cient.

Examples: Let λ > 0 be a parameter.
1

β̂0 = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

1βi 6=0

)
.

Pay a �xed price λ for including a given variable into the model.
Variables that do not signi�cantly contribute to reducing the

error are excluded from the model (i.e., βi = 0).
Problem: di�cult to solve (combinatorial optimization). Cannot

be solved e�ciently for a large number of variables.
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Shrinkage methods (cont.)

Relaxations of the previous approach:
2 Ridge regression/Tikhonov regularization:

β̂ridge = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

β2
i

)
.

Shrinks the coe�cients by imposing a penalty on their size.
Penalty = λ · ‖β‖22.
Problem equivalent to

β̂ridge = argmin
β∈Rp

‖y −Xβ‖22 subject to

p∑
i=1

β2i ≤ t.

Penalty is a smooth function.
Easy to solve (solution can be written in closed form).
Generally does not set any coe�cient to zero (no model

selection).
Can be used to �regularize� a rank de�cient problem (n < p).
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Ridge regression: closed form solution

We have

∂

∂β

(
‖y −Xβ‖22 + λ

p∑
i=1

β2i

)
= 2(XTXβ −XT y) + 2λβ

= 2
(
(XTX + λI)β −XT y

)
.

Therefore, the critical points satisfy

(XTX + λI)β = XT y.

Note: (XTX + λI) is positive de�nite, and therefore invertible.

Therefore, the system has a unique solution. Can check using the
Hessian that the solution is a minimum. Thus,

βridge = (XTX + λI)−1XT y.

Remarks:

When λ > 0, the estimator is de�ned even when n < p.
When λ = 0 and n > p, we recover the usual least squares
solution.
Makes rigorous �adding a multiple of the identity� to XTX.
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The Lasso

3 The Lasso (Least Absolute Shrinkage and Selection Operator):

β̂lasso = argmin
β∈Rp

(
‖y −Xβ‖22 + λ

p∑
i=1

|βi|

)
.

Introduced in 1996 by Robert Tibshirani.
Equivalent to

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 subject to‖β‖1 =

p∑
i=1

|βi| ≤ t.

Sets coe�cients to zero (model selection) and shrinks them.
More �global� approach to selecting variables compared to

previously discussed greedy approaches.
Can be seen as a convex relaxation of the β̂0 problem.
No closed form solution, but can solved e�ciently using convex

optimization methods.
Performs well in practice.
Very popular. Active area of research.
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Important model selection property

β̂lasso = argminβ∈Rp ‖y −Xβ‖22
subject to ‖β‖1 =

∑p
i=1 |βi| ≤ t

ESL, Fig. 3.11.

Solutions are the intersection of the ellipses with the ‖ · ‖1 or
‖ · ‖2 balls. Corners of the ‖ · ‖1 have zero coe�cients.

Likely to �hit� corners. Thus, the solution usually has many zeros.
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Example

Note: We usually do not penalize the intercept (variable �0� on the
�gure).

7/13

Elastic net

Elastic net (Zou and Hastie, 2005)

β̂e-net argmin
β∈Rp

‖y−Xβ‖22+λ2‖β‖22+λ1‖β‖1.

Bene�ts from both `1 (model selection) and `2 regularization.

Downside: Two parameters to choose instead of one (can
increase the computational burden quite a lot in large
experiments).
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Choosing parameters: cross-validation

Ridge, lasso, elastic net have regularization parameters.

We obtain a family of estimators as we vary the parameter(s).

An optimal parameter needs to be chosen in a principled way.

Cross-validation is a popular approach for rigorously choosing
parameters.

K-fold cross-validation:

Split data into K equal (or almost equal) parts/folds at random.
for each parameter λi do
for j = 1, . . . ,K do

Fit model on data with fold j removed.
Test model on remaining fold → j-th test error.

end for

Compute average test errors for parameter λi.
end for

Pick parameter with smallest average error.
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K-fold CV

More precisely,

Split data into K folds F1, . . . , FK .

Let L(y, ŷ) be a loss function. For example,
L(y, ŷ) = ‖y − ŷ‖22 =

∑n
i=1(yi − ŷi)2.

Let f−kλ (x) be the model �tted on all, but the k-th fold.
Let

CV (λ) :=
1

n

n∑
k=1

∑
i∈Fk

L(yi, f
−i
λ (xi))

Pick λ among a relevant set of parameters

λ̂ = argmin
λ∈{λ1,...,λm}

CV (λ)
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Model selection vs Model assessment

Two related, but di�erent goals:

Model selection: estimating the performance of di�erent models in
order to choose the �best� one.

Model assessment: having chosen a �nal model, estimating its
prediction error (generalization error) on new data.

Model assessment: is the estimator really good? compare di�erent
models with their own sets of parameters.

Generally speaking, the CV error provides a good estimate of the
prediction error.

When enough data is available, it is better to separate the data into
three parts: train/validate, and test.

Typically: 50% train, 25% validate, 25% test.

Test data is �kept in a vault�, i.e., not used for �tting or choosing
the model.

Other methods (e.g. AIC, BIC, etc.) can be used when working with
very little data.
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Summary of the regression methods seen so far

1 Ordinary least squares (OLS)

Minimizes sum of squares.
Solution not unique when n < p.
Estimate unstable when the predictors are collinear.
Generally does not lead to best prediction error.

2 Ridge regression (`2 penalty)

Regularized solution.
Estimator exists and is stable, even when n < p.
Easy to compute (add multiple of identity to XTX).
Coe�cients not set to zero (no model selection).
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Summary of the regression methods seen so far (cont.)

3 Subset selection methods (best subset, stepwise and stagewise
approaches)

Generally leads to a favorable bias-variance trade-o�.
Model selection. Leads to models that are easier to interpret
and work with.
Can be computationally intensive (e.g. best subset can only be
computed for small p)
Some of the approaches are greedy/less-rigorous.

4 Lasso (`1 penalty)

Shrinks and sets to zero the coe�cients (shrinkage + model
selection).
Generally leads to a favorable bias-variance trade-o�.
Model selection. Leads to models that are easier to interpret
and work with.
Can be e�ciently computed.
Supporting theory. Active area of research.
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