MATH 567: Mathematical Techniques in Data Science Support vector machines

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 13, 2016

1

Hyperplanes (cont.)

Let

$$H = \{x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0\}.$$

Note that for $x_0, x_1 \in H$

 $\beta^{T}(x_{0} - x_{1}) = 0.$

Thus eta is perpendicular to H. It follows that for $x\in\mathbb{R}^n,$

$$d(x, H) = \frac{\beta^T}{\|\beta\|}(x - x_0) = \frac{\beta_0 + \beta^T x}{\|\beta\|}.$$

Hyperplan

Recall:

- \bullet A $\mathit{hyperplane}\; H$ in $V=\mathbb{R}^n$ is a subspace of V of dimension
- n-1 (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via $H = \{x \in \mathbb{R}^n : \beta^T x = 0\} = \operatorname{sp}\operatorname{an}(\beta)^{\perp}.$
- ullet An affine hyperplane H in \mathbb{R}^n is a subset of the form

$$H = \{x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0\}$$

• We often use the term "hyperplane" for "affine hyperplane".

2/8

Separating hyperplane

Suppose we have binary data with labels $\{+1, -1\}$. We want to separate data using an (affine) hyperplane.

25 t, April 4.14. | Orange = **k**onseption

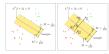
Classify using $G(x) = \operatorname{sgn}(x^T \beta + \beta_0)$.

- Separating hyperplane may not be unique.
- Separating hyperplane may not exist (i.e., data may not be separable).

3/0

Margins

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").



Data: $(y_i,x_i)\in\{+1,-1\}\times\mathbb{R}^p$ $(i=1,\ldots,n).$ Suppose $\beta_0+\beta^Tx$ is a separating hyperplane with $\|\beta\|=1.$ Note that:

$$y_i(x_i^T \beta + \beta_0) > 0 \Rightarrow \text{Correct classification}$$

 $y_i(x_i^T \beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification}$

Also, $|y_i(x_i^T\beta+\beta_0)|=$ distance between x and hyperplane (since $||\beta||=1$)

5/8

Support vector machines

- The previous problem works well when the data is separable.

 What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error. We replace $u(x^T \beta + \beta_0) > M$ by

$$y_i(x_i^T \beta + \beta_0) \ge M(1 - \xi_i), \quad \xi_i \ge 0,$$

and add the constraint

$$\sum^n \xi_i \leq C \qquad \text{for some fixed constant } C > 0.$$

The problem becomes:

$$\max_{\beta_0, \beta \in \mathbb{R}^p, ||\beta|| = 1} M$$
subject to $y_i(x_i^T \beta + \beta_0) \ge M(1 - \xi_i)$

$$\xi_i \ge 0$$
, $\sum_{i=1}^{n} \xi_i \le C$.

Margins (cont.)

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\| = 1} M$$
subject to $u_i(x_i^T \beta + \beta_0) \ge M$ $(i = 1, ..., n)$.

We will transform the problem into a usual form used in convex optimization.

We can remove $\|\beta\| = 1$ by replacing the constraint by

$$\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M$$
, or equivalently, $y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|$.

We can always rescale (β, β_0) so that $\|\beta\| = 1/M$. Our problem is therefore equivalent to

$$\min_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{2} \|\beta\|^2$$
subject to $u_i(x_i^T \beta + \beta_0) \ge 1$ $(i = 1, ..., n)$.

We now recognize the problem as a convex optimization problem with a quadratic objective, and linear inequality constraints.

Support vector machines (cont.)

As before, we can transform the problem into its "normal" form:

$$\begin{split} & \min_{\beta \beta, \beta} \frac{1}{2} \|\beta\|^2 \\ & \text{subject to } y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i \\ & \xi_i \geq 0, \qquad \sum_{n}^{n} \xi_i \leq C. \end{split}$$

Problem can be solved using standard optimization packages.