MATH 567: Mathematical Techniques in Data Science Support vector machines and kernels

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 20, 2017

1/10

A brief intro to duality in optimization

Consider the no blem:

$$\min_{x \in \mathcal{D} \subset \mathbb{R}^n} \quad f_0(x)$$
subject to $f_i(x) \leq 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

Denote by p^* the optimal value of the problem. Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).$$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) := \inf_{x \in D} L(x, \lambda, \nu).$$

Claim: for every $\lambda \ge 0$.

$$g(\lambda, \nu) \le p^*$$
.

Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:

What if the data is not separable? Can map into a high-dimensional space.

2/10

A brief intro to duality in optimization

Dual problem:

$$\max_{\lambda \in \mathbb{R}^m, \ \nu \in \mathbb{R}^p} g(\lambda, \nu)$$
subject to $\lambda \ge 0$.

Denote by d^* the optimal value of the dual problem. Clearly

$$d^* \le p^*$$
 (weak duality).

Strong duality: $d^* = p^*$.

- Does not hold in general.
- Usually holds for convex problems.
- (See e.g. Slater's constraint qualification).

3/10 4/10

The kernel trick

Recall that SVM solves:

$$\begin{split} & \min_{\beta_0,\beta,\xi} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i \\ & \text{subject to } y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i \\ & \xi_i \geq 0. \end{split}$$

The associated Lagrangian is

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i [y_i(x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^n \mu_i \xi_i,$$

which we minimize w.r.t. β , β_0 , ξ . Setting the respective derivatives to 0, we obtain:

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i$$
, $0 = \sum_{i=1}^{n} \alpha_i y_i$, $\alpha_i = C - \mu_i$ $(i = 1, \dots, n)$.

5/10

Positive definite kernels

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

In fact, we don't even need to specify h, we only need:

$$K(x, x') = \langle h(x), h(x') \rangle$$
.

Question: Given $K : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that $K(x,x') = \langle h(x), h(x') \rangle$

for some function h?

The previous question can be answered using the notion of positive definite function in functional analysis

Observation: Suppose K has the desired form. Then, for $x_1, \dots, x_N \in \mathbb{R}^p$, and $v_i := h(x_i)$,

$$\begin{split} (K(x_i, x_j)) &= (\langle h(x_i), h(x_j) \rangle) \\ &= (\langle v_i, v_j \rangle) \\ &= V^T V, \qquad \text{where } V = (v_1^T, \dots, v_N^T). \end{split}$$

Conclusion: the matrix $(K(x_i, x_j))$ is positive semidefinite.

The kernel trick (cont.)

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality). Now suppose $h: \mathbb{R}^p \to \mathbb{R}^m$ transforming our features to

$$h(x_i) = (h_1(x_i), ..., h_m(x_i)) \in \mathbb{R}^m$$
.

The Lagrange dual function becomes:

$$L_D = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^T \mathbf{h}(\mathbf{x_j}).$$

Important observation: L_D only depends on $\langle h(x_i), h(x_i) \rangle$.

6/10

Positive definite kernels (cont.)

• Necessary condition to have $K(x, x') = \langle h(x), h(x') \rangle$:

$$(K(x_i, x_i))_{i=1}^{N}$$
 is psd

for any x_1,\ldots,x_N , and any $N\geq 1$.

• Note also that K(x,x')=K(x',x) if $K(x,x')=\langle h(x),h(x')\rangle$.

Definition: Let X be a set. A symmetric kernel $K : X \times X \to \mathbb{R}$ is said to be a positive (semi) definite kernel if

$$(K(x_i,x_j))_{i,j=1}^N$$
 is positive (semi)definite

for all $x_1, \dots, x_N \in \mathcal{X}$ and all $N \ge 1$.

 \bullet One can show that positive definite kernels can be written $K(x,x')=\langle h(x),h(x')\rangle$ for some function h defined on an appropriate space .

Back to SVM

We can replace h by any positive definite kernel in the SVM problem:

$$\begin{split} L_D &= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x}_i)^{\mathbf{T}} \mathbf{h}(\mathbf{x}_j) \\ &= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j). \end{split}$$

Three popular choice in the SVM literature:

$$\begin{split} K(x,x') &= e^{-\gamma \|x-x'\|_2^2} &\quad \text{(Gaussian kernel)} \\ K(x,x') &= (1+\langle x,x'\rangle)^d &\quad (d\text{-th degree polynomial)} \\ K(x,x') &= \tanh(\kappa_1\langle x,x'\rangle + \kappa_2) &\quad \text{(Neural networks)}. \end{split}$$

Example: decision function

SVM - Degree-4 Polynomial in Feature Space

ES L. Figure 12.3 (solid black line = decision boundary, dotted line = margin).

9/10 10/10