o High-dimensional data often has a low-rank structure.

@ Most of the “action” may occur in a subspace of R”
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@ Principal components analysis: construct projections of the data
that capture most of the variability in the data.
@ Provides a low-rank approximation to the data

@ Can lead to a significant dimensionality reduction
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Principal component analysis (PCA) Proof of claim: Rayleigh quotients

o Let X € R"*P with rows a1,...,z, € RP. We think of X as n Let A € RP*? be a symmetric (or Hermitian) matrix. The Rayleigh
observations of a random vector (X1,....X,) € R”. quotient is defined by

o Suppose each column has mean 0, i, 7 2 = 01
o We want to find a linear combination wi X1 + - - - + w, X, with R(Ax) =
maximum variance. (Intuition: we look for a direction in R” where
the data varies the most

(z € R%,2 # 0p).

Observations

O If Az = Az with |zl = 1, then R(A,a) = A. Thus,

We solve:
- uanm‘(Z(, )2, SUp R(A, ) = Anas(4).
lwllz=1 = 7
(Note: 2, (x7w)? is proportional to the sample variance of the @ Let {\,..., A} denote the eigenvalues of A, and let

data since we assume each column of X has mean (0.) M R b ancthonorma b of cenectors of

Equivalently, we solve: '\ Oy, then R(A,x) =

<=
1 .
w = argmax(Xw)" (Xw) = argmax w’ X" Xw 1t follows that
wll2=1 wllz=1 sup R(A,z) < Amax(A).
. T£0
Claim: w is an eigenvector associated to the largest eigenvalue of "
X7, Thus, sup, 2o R(A. ) = sup|, - 2 Az = Anax(A)
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Back to PCA

Previous argument shows that
wV) = argmax Y (a7 w)? = argmaxw” X Xw
o=t = ulla=1

is an eigenvector associated to the largest eigenvalue of X7 X
First principal component: ;
o The linear combination 37_, w!") X, is the first principal
component of (X1,..., X,)
o Alternatively, we say that Xw(!) is the first (sample) principal
component of X.
@ It is the linear combination of the columns of X having the “most
variance”.
Second principal component: We look for a new linear
combination of the X;’s that

@ s orthogonal to the first principal component, and

@ Maximizes the variance
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PCA: summary

In summary, suppose

XX =vUAUT
where [/ € RP*? is an orthogonal matrix and A € RP7 is diagonal.
(Eigendecomposition of X7X)
o Recall that the columns of U are the eigenvectors of X7 X and
the diagonal of A contains the eigenvalues of X7 X (i.e., the
(square of the) singular values of X)
o Then the principal components of X are the columns of XU
o Write U = (u,...,up). Then the variance of the i-th principal
component is

(Xu) " (X)) = ul XTXu; = (UTXTXU ) = Ay

Conclusion: The variance of the i-th principal component is the
i-th eigenvalue of X7 X
o We say that the first k PCs explain (X5, Aq)/(X7_, Awi) x 100
percent of the variance.
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Back to PCA (cont.)

In other words:

w® = argmax Y (a7 w)? = argmaxw” X7 Xuw.
lwlla=1 §= [hwllz=1

wLu® wLu®

@ Using a similar argument as before with Rayleigh quotients, we

conclude that w(®) is an eigenvector associated to the second

largest eigenvalue of X7 X

o Similarly, given w(®, ... w®), we define

wk ) = argmax  w!' X7 Xw.

argmax
lwllz=1 i=1
wlw® w), a®)

As before, the vector w(**!) is an eigenvector associated to the

(k + 1)-th largest eigenvalue of X7X.
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Example: zip dataset

Recall the zip dataset:

© 9298 images of digits 0 — 9

@ Each image is in black/white with 16 x 16 = 256 pixels.
We use PCA to project the data onto a 2-dim subspace of R’

256
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o Note: % variance explained by the first two PCAs.
@ = 90% variance explained by first 55 components.
s

Projection uit

@ PCA looks for subspaces with the most variance.
@ Can also optimize other criteria
Projection pursuit (PP)

@ Set up a projection “index” to judge the merit of a particular
one or two-dimensional projection of a given set of multivariate
data.

@ Use an optimization algorithm to find the global and local
extrema of that projection index over all 1/2-dimensional
projections of the data

Example:(Izenman, 2013) The absolute value of kurtosis, [r4(Y)],
of the one-dimensional projection ¥ = w” X has been widely used
as a measure of non-Gaussianity of ¥’
@ Recall: The marginals of the multivariate Gaussian distribution
are Gaussian
@ Can maximize/minimize the kurtosis to find subspaces where
data looks Gaussian/non-Gaussian (e.g. to detect outliers).
1

@ PCAs can be directly used in a regression context

Principal component regression: y € R"*1, X € R
O Center y and each column of X (i.e.. subtract mean from the
columns)
@ Compute the eigen-decomposition of X7 X
XTX =UAUT.
© Compute k > 1 principal components
Wi = (Xui,.... Xup) = XUy,
where U = (u1,....u,), and Uy, = (u1,... u;) € RP¥F
© Regress y on the principal components:

= (WIw)Twly

ik
@ The PCR estimator is
B = UpAk, §® = X3y = XULB,
Note: k is a parameter that needs to be chosen (using CV or
another method). Typically, one picks k to be significantly smaller
than p. 1/m




