MATH 567: Mathematical Techniques in Data Science Random forest

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 24, 2017

- We saw before that decision trees often overfit the data.
- We will now discuss techniques that can be used to mitigate that problem.
- We saw before that decision trees often overfit the data.
- We will now discuss techniques that can be used to mitigate that problem.
Bootstrapping: General statistical method that relies on resampling data with replacement.
- We saw before that decision trees often overfit the data.
- We will now discuss techniques that can be used to mitigate that problem.
Bootstrapping: General statistical method that relies on resampling data with replacement. Idea: Given data $\left(y_{i}, x_{i}\right), i=1, \ldots, n$, construct bootstrap samples by sampling n of the observations with replacement (i.e., allow repetitions):

Sample 1
$\left(y_{i_{1}}, x_{i_{1}}\right)$
$\left(y_{i_{2}}, x_{i_{2}}\right)$
$\left(y_{i_{n}}, x_{i_{n}}\right)$

Sample 2
$\left(y_{j_{1}}, x_{j_{1}}\right)$
$\left(y_{j_{2}}, x_{j_{2}}\right)$
$\left(y_{j_{n}}, x_{j_{n}}\right)$

Sample 3
$\left(y_{k_{1}}, x_{k_{1}}\right)$
$\left(y_{k_{2}}, x_{k_{2}}\right)$
$\left(y_{k_{n}}, x_{k_{n}}\right)$

- We saw before that decision trees often overfit the data.
- We will now discuss techniques that can be used to mitigate that problem.
Bootstrapping: General statistical method that relies on resampling data with replacement. Idea: Given data $\left(y_{i}, x_{i}\right), i=1, \ldots, n$, construct bootstrap samples by sampling n of the observations with replacement (i.e., allow repetitions):

Sample 1	Sample 2	Sample 3
$\left(y_{i_{1}}, x_{i_{1}}\right)$	$\left(y_{j_{1}}, x_{j_{1}}\right)$	$\left(y_{k_{1}}, x_{k_{1}}\right)$
$\left(y_{i_{2}}, x_{i_{2}}\right)$	$\left(y_{j_{2}}, x_{j_{2}}\right)$	$\left(y_{k_{2}}, x_{k_{2}}\right)$
\vdots	\vdots	\vdots
$\left(y_{i_{n}}, x_{i_{n}}\right)$	$\left(y_{j_{n}}, x_{j_{n}}\right)$	$\left(y_{k_{n}}, x_{k_{n}}\right)$

- Each bootstrap sample mimics the statistical properties of the original data.
- Often used to estimate parameter variability (or uncertainty).

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.
(1) Construct $B \in \mathbb{N}$ bootstrap samples.

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.
(1) Construct $B \in \mathbb{N}$ bootstrap samples.
(2) Train the method on the b-th bootstrap sample to get $\hat{f}^{* b}(x)$.

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.
(1) Construct $B \in \mathbb{N}$ bootstrap samples.
(2) Train the method on the b-th bootstrap sample to get $\hat{f}^{* b}(x)$.
(3) Compute the average of the estimators:

$$
\hat{f}_{\mathrm{bag}}(x)=\frac{1}{B} \sum_{i=1}^{B} \hat{f}^{* b}(x)
$$

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.
(1) Construct $B \in \mathbb{N}$ bootstrap samples.
(2) Train the method on the b-th bootstrap sample to get $\hat{f}^{* b}(x)$.
(3) Compute the average of the estimators:

$$
\hat{f}_{\mathrm{bag}}(x)=\frac{1}{B} \sum_{i=1}^{B} \hat{f}^{* b}(x) .
$$

- Bagging is often used with regression trees.
- Can improve estimators significantly.

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.
(1) Construct $B \in \mathbb{N}$ bootstrap samples.
(2) Train the method on the b-th bootstrap sample to get $\hat{f}^{* b}(x)$.
(3) Compute the average of the estimators:

$$
\hat{f}_{\mathrm{bag}}(x)=\frac{1}{B} \sum_{i=1}^{B} \hat{f}^{* b}(x)
$$

- Bagging is often used with regression trees.
- Can improve estimators significantly.

Note: Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.
(1) Construct $B \in \mathbb{N}$ bootstrap samples.
(2) Train the method on the b-th bootstrap sample to get $\hat{f}^{* b}(x)$.
(3) Compute the average of the estimators:

$$
\hat{f}_{\mathrm{bag}}(x)=\frac{1}{B} \sum_{i=1}^{B} \hat{f}^{* b}(x)
$$

- Bagging is often used with regression trees.
- Can improve estimators significantly.

Note: Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.
The bagged estimate is the average prediction at x from these B trees.

Bagging

Bagging:(bootstrap aggregation) Suppose we have a model $y \approx \hat{f}(x)$ for data $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}$.
(1) Construct $B \in \mathbb{N}$ bootstrap samples.
(2) Train the method on the b-th bootstrap sample to get $\hat{f}^{* b}(x)$.
(3) Compute the average of the estimators:

$$
\hat{f}_{\mathrm{bag}}(x)=\frac{1}{B} \sum_{i=1}^{B} \hat{f}^{* b}(x) .
$$

- Bagging is often used with regression trees.
- Can improve estimators significantly.

Note: Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.
The bagged estimate is the average prediction at x from these B trees.
For classification: Use a majority vote from the B trees.

Example: trees with simulated data (ESL, Example 8.7.1)

Simulation:

- $N=30$ samples with $p=5$ features.
- Features from a standard Gaussian distribution with pairwise correlation 0.95 .
- Y generated according to

$$
\begin{aligned}
& P\left(Y=1 \mid X_{1} \leq 0.5\right)=0.2 \\
& P\left(Y=1 \mid X_{1}>0.5\right)=0.8
\end{aligned}
$$

Example: trees with simulated data (ESL, Example 8.7.1)

Simulation:

- $N=30$ samples with $p=5$ features.
- Features from a standard Gaussian distribution with pairwise correlation 0.95.
- Y generated according to

$$
\begin{aligned}
& P\left(Y=1 \mid X_{1} \leq 0.5\right)=0.2 \\
& P\left(Y=1 \mid X_{1}>0.5\right)=0.8
\end{aligned}
$$

- A test sample of size 2,000 was also generated using the same model.
- The test error for the original tree and the bagged tree are reported.

Example (cont.)

Bootstrap trees:

ESL, Figure 8.9.

Example (cont.)

Test error:

Errors for the bagging example. (ESL, Figure 8.10.)
The orange points correspond to the consensus vote, while the green points average the probabilities.

Example (cont.)

Test error:

Errors for the bagging example. (ESL, Figure 8.10.)
The orange points correspond to the consensus vote, while the green points average the probabilities.
Out-of-bag error: Mean prediction error on each training sample x_{i}, using only the trees that did not have x_{i} in their bootstrap sample.
Can be used to approximate the prediction error.

- Idea of bagging: average many noisy but approximately unbiased models, and hence reduce the variance.
- However, the bootstrap trees are generally correlated.
- Random forests improve the variance reduction of bagging by reducing the correlation between the trees.
- Achieved in the tree-growing process through random selection of the input variables.
- Popular method.

Random forests (cont.)

Random forests: Each time a split in a tree is considered, a random selection of m predictors is chosen as split candidates from the full set of p predictors.

Random forests (cont.)

Random forests: Each time a split in a tree is considered, a random selection of m predictors is chosen as split candidates from the full set of p predictors.

- Typical value for m is \sqrt{p}.

Random forests (cont.)

Random forests: Each time a split in a tree is considered, a random selection of m predictors is chosen as split candidates from the full set of p predictors.

- Typical value for m is \sqrt{p}.
- We construct T_{1}, \ldots, T_{B} trees using that method on bootstrap samples. The random forest (regression) predictor is

$$
\hat{f}_{\mathrm{rf}}^{B}(x)=\frac{1}{B} \sum_{b=1}^{B} T_{b}(x)
$$

For classification: use majority vote.

Diagnostic classification of four childhood tumors (Khan et al., 2001):

- Small, round, blue-cell tumors (SRBCTs) of childhood.
- Four types of SRBCTs (EWS, BL, NB, RMS).
- Tumors have a similar appearance.
- Getting the diagnosis correct impacts directly upon the type of treatment, therapy, and prognosis the patient receives.
- Currently, no single clinical test that can discriminate between these cancers.

Diagnostic classification of four childhood tumors (Khan et al., 2001):

- Small, round, blue-cell tumors (SRBCTs) of childhood.
- Four types of SRBCTs (EWS, BL, NB, RMS).
- Tumors have a similar appearance.
- Getting the diagnosis correct impacts directly upon the type of treatment, therapy, and prognosis the patient receives.
- Currently, no single clinical test that can discriminate between these cancers.
Data:
- 83 cases (29 EWS, $11 \mathrm{BL}, 18 \mathrm{NB}, 25 \mathrm{RMS}$).
- Gene expression data for 6,567 genes, reduced to 2,308 by requiring a minimum intensity.
- research.nhgri.nih.gov/microarray/Supplement.

Diagnostic classification of four childhood tumors (Khan et al., 2001):

- Small, round, blue-cell tumors (SRBCTs) of childhood.
- Four types of SRBCTs (EWS, BL, NB, RMS).
- Tumors have a similar appearance.
- Getting the diagnosis correct impacts directly upon the type of treatment, therapy, and prognosis the patient receives.
- Currently, no single clinical test that can discriminate between these cancers.
Data:
- 83 cases (29 EWS, $11 \mathrm{BL}, 18 \mathrm{NB}, 25 \mathrm{RMS}$).
- Gene expression data for 6,567 genes, reduced to 2,308 by requiring a minimum intensity.
- research.nhgri.nih.gov/microarray/Supplement.
- A random forest was applied to these data using 500 fully grown trees with $m=25$ variables at each split.

Diagnostic classification of four childhood tumors (Khan et al., 2001):

- Small, round, blue-cell tumors (SRBCTs) of childhood.
- Four types of SRBCTs (EWS, BL, NB, RMS).
- Tumors have a similar appearance.
- Getting the diagnosis correct impacts directly upon the type of treatment, therapy, and prognosis the patient receives.
- Currently, no single clinical test that can discriminate between these cancers.
Data:
- 83 cases (29 EWS, $11 \mathrm{BL}, 18 \mathrm{NB}, 25 \mathrm{RMS}$).
- Gene expression data for 6,567 genes, reduced to 2,308 by requiring a minimum intensity.
- research.nhgri.nih.gov/microarray/Supplement.
- A random forest was applied to these data using 500 fully grown trees with $m=25$ variables at each split.
- Able to get a 0% Out-of-bag misclassification rate.

Boosting

Like bagging, boosting is a general approach that can be applied to many models. Combines weak learners into a single strong learner.

Boosting

Like bagging, boosting is a general approach that can be applied to many models. Combines weak learners into a single strong learner.

Boosting: Recursively fit trees to residuals. (Compensate the shortcoming of previous model.)

Boosting

Like bagging, boosting is a general approach that can be applied to many models. Combines weak learners into a single strong learner.
Boosting: Recursively fit trees to residuals. (Compensate the shortcoming of previous model.)
Input: $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}, i=1, \ldots, n$.

Boosting

Like bagging, boosting is a general approach that can be applied to many models. Combines weak learners into a single strong learner.
Boosting: Recursively fit trees to residuals. (Compensate the shortcoming of previous model.)
Input: $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}, i=1, \ldots, n$. Initialize $\hat{f}(x)=0, r_{i}=y_{i}$.

Boosting

Like bagging, boosting is a general approach that can be applied to many models. Combines weak learners into a single strong learner.
Boosting: Recursively fit trees to residuals. (Compensate the shortcoming of previous model.)
Input: $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}, i=1, \ldots, n$. Initialize $\hat{f}(x)=0, r_{i}=y_{i}$.
For $b=1, \ldots, B$:
(1) Fit a tree estimator \hat{f}^{b} with d splits to the training data.
(2) Update the estimator using:

$$
\hat{f}(x) \leftarrow \hat{f}(x)+\lambda \cdot \hat{f}^{b}(x)
$$

(3) Update the residuals:

$$
r_{i} \leftarrow r_{i}-\lambda \cdot \hat{f}^{b}\left(x_{i}\right)
$$

Boosting

Like bagging, boosting is a general approach that can be applied to many models. Combines weak learners into a single strong learner.
Boosting: Recursively fit trees to residuals. (Compensate the shortcoming of previous model.)
Input: $\left(y_{i}, x_{i}\right) \in \mathbb{R}^{p+1}, i=1, \ldots, n$. Initialize $\hat{f}(x)=0, r_{i}=y_{i}$.
For $b=1, \ldots, B$:
(1) Fit a tree estimator \hat{f}^{b} with d splits to the training data.
(2) Update the estimator using:

$$
\hat{f}(x) \leftarrow \hat{f}(x)+\lambda \cdot \hat{f}^{b}(x)
$$

(3) Update the residuals:

$$
r_{i} \leftarrow r_{i}-\lambda \cdot \hat{f}^{b}\left(x_{i}\right)
$$

Output: Boosted tree:

$$
\hat{f}(x)=\sum_{i=1}^{B} \lambda \hat{f}^{b}(x)
$$

Note: $\lambda>0$ is a learning rate.

Boosting (cont.)

Can use many small trees (by choosing d small) and learn slowly (λ small) to avoid overfitting.

Boosting (cont.)

Can use many small trees (by choosing d small) and learn slowly (λ small) to avoid overfitting.
Choosing the parameters:
(1) Number of trees B : choose by cross-validation.
(2) Number of splits: can use a small value (e.g. $d=1$).
(3) Learning rate: can use $0.01,0.001$. Note: A small λ will generally require a larger $B \ldots$

Can use many small trees (by choosing d small) and learn slowly (λ small) to avoid overfitting.
Choosing the parameters:
(1) Number of trees B : choose by cross-validation.
(2) Number of splits: can use a small value (e.g. $d=1$).
(3) Learning rate: can use $0.01,0.001$. Note: A small λ will generally require a larger $B \ldots$

Gradient boosting: More generally, one can work with a general loss function (instead of sum of squares) and replace the residuals with the (negative) of the gradient of the loss function.

Relative importance of predictor variables

- The previous methodologies can improve decision trees considerably.
- However, we lose the nice interpretability of decision trees.

Relative importance of predictor variables

- The previous methodologies can improve decision trees considerably.
- However, we lose the nice interpretability of decision trees. A relative importance of each predictor can be computed to help understand a model with multiple trees.

Relative importance of predictor variables

- The previous methodologies can improve decision trees considerably.
- However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help understand a model with multiple trees.

- Let T be a (binary) decision tree with $J-1$ internal nodes.

Relative importance of predictor variables

- The previous methodologies can improve decision trees considerably.
- However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help understand a model with multiple trees.

- Let T be a (binary) decision tree with $J-1$ internal nodes.
- At each internal node t, a variable $X_{v(t)}$ is split, resulting in an improvement \hat{i}_{t}^{2} in squared error.

Relative importance of predictor variables

- The previous methodologies can improve decision trees considerably.
- However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help understand a model with multiple trees.

- Let T be a (binary) decision tree with $J-1$ internal nodes.
- At each internal node t, a variable $X_{v(t)}$ is split, resulting in an improvement \hat{i}_{t}^{2} in squared error.
- We define a measure of relevance of X_{l} by

$$
\mathcal{I}_{l}^{2}(T):=\sum_{t=1}^{J-1} \hat{\iota}_{t}^{2} \cdot I(v(t)=l)
$$

In other words, we add-up the improvements at the nodes where X_{l} is split.

Relative importance of predictor variables (cont.)

- Similarly, in a model obtained from M trees (e.g. bagging, random forest), we use:

$$
\mathcal{I}_{l}^{2}=\frac{1}{M} \sum_{m=1}^{M} \mathcal{I}_{l}^{2}\left(T_{m}\right)
$$

Relative importance of predictor variables (cont.)

- Similarly, in a model obtained from M trees (e.g. bagging, random forest), we use:

$$
\mathcal{I}_{l}^{2}=\frac{1}{M} \sum_{m=1}^{M} \mathcal{I}_{l}^{2}\left(T_{m}\right)
$$

- Taking the square root of the relevance measure, we obtain the relevance of X_{l}.

Relative importance of predictor variables (cont.)

- Similarly, in a model obtained from M trees (e.g. bagging, random forest), we use:

$$
\mathcal{I}_{l}^{2}=\frac{1}{M} \sum_{m=1}^{M} \mathcal{I}_{l}^{2}\left(T_{m}\right)
$$

- Taking the square root of the relevance measure, we obtain the relevance of X_{l}.
- Typically, we do not report the actual relevance of a variable. We rather report the percentage of relevance of a given variable with respect to the variable with the largest relevance.

Relative importance of predictor for the spam data

ESL, Figure 10.6

