
MATH 567: Mathematical Techniques in Data
Science

Random forest

Dominique Guillot

Departments of Mathematical Sciences

University of Delaware

April 24, 2017

1/14



The bootstrap

We saw before that decision trees often over�t the data.

We will now discuss techniques that can be used to mitigate that

problem.

Bootstrapping: General statistical method that relies on

resampling data with replacement.

Idea: Given data (yi, xi), i = 1, . . . , n, construct bootstrap samples

by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3

(yi1 , xi1) (yj1 , xj1) (yk1 , xk1)
(yi2 , xi2) (yj2 , xj2) (yk2 , xk2)

...
...

...

(yin , xin) (yjn , xjn) (ykn , xkn)

Each bootstrap sample mimics the statistical properties of the

original data.

Often used to estimate parameter variability (or uncertainty).

2/14



The bootstrap

We saw before that decision trees often over�t the data.

We will now discuss techniques that can be used to mitigate that

problem.

Bootstrapping: General statistical method that relies on

resampling data with replacement.

Idea: Given data (yi, xi), i = 1, . . . , n, construct bootstrap samples

by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3

(yi1 , xi1) (yj1 , xj1) (yk1 , xk1)
(yi2 , xi2) (yj2 , xj2) (yk2 , xk2)

...
...

...

(yin , xin) (yjn , xjn) (ykn , xkn)

Each bootstrap sample mimics the statistical properties of the

original data.

Often used to estimate parameter variability (or uncertainty).

2/14



The bootstrap

We saw before that decision trees often over�t the data.

We will now discuss techniques that can be used to mitigate that

problem.

Bootstrapping: General statistical method that relies on

resampling data with replacement.

Idea: Given data (yi, xi), i = 1, . . . , n, construct bootstrap samples

by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3

(yi1 , xi1) (yj1 , xj1) (yk1 , xk1)
(yi2 , xi2) (yj2 , xj2) (yk2 , xk2)

...
...

...

(yin , xin) (yjn , xjn) (ykn , xkn)

Each bootstrap sample mimics the statistical properties of the

original data.

Often used to estimate parameter variability (or uncertainty).

2/14



The bootstrap

We saw before that decision trees often over�t the data.

We will now discuss techniques that can be used to mitigate that

problem.

Bootstrapping: General statistical method that relies on

resampling data with replacement.

Idea: Given data (yi, xi), i = 1, . . . , n, construct bootstrap samples

by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3

(yi1 , xi1) (yj1 , xj1) (yk1 , xk1)
(yi2 , xi2) (yj2 , xj2) (yk2 , xk2)

...
...

...

(yin , xin) (yjn , xjn) (ykn , xkn)

Each bootstrap sample mimics the statistical properties of the

original data.

Often used to estimate parameter variability (or uncertainty).
2/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.

1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.

3/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.

2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.

3/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).

3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.

3/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.

3/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.

3/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.

3/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.

3/14



Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ≈ f̂(x) for data (yi, xi) ∈ Rp+1.
1 Construct B ∈ N bootstrap samples.
2 Train the method on the b-th bootstrap sample to get f̂∗b(x).
3 Compute the average of the estimators:

f̂bag(x) =
1

B

B∑
i=1

f̂∗b(x).

Bagging is often used with regression trees.

Can improve estimators signi�cantly.

Note: Each bootstrap tree will typically involve di�erent features

than the original, and might have a di�erent number of terminal

nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classi�cation: Use a majority vote from the B trees.
3/14



Example: trees with simulated data (ESL, Example 8.7.1)

Simulation:

N = 30 samples with p = 5 features.

Features from a standard Gaussian distribution with pairwise

correlation 0.95.

Y generated according to

P (Y = 1|X1 ≤ 0.5) = 0.2

P (Y = 1|X1 > 0.5) = 0.8.

A test sample of size 2, 000 was also generated using the same

model.

The test error for the original tree and the bagged tree are

reported.

4/14



Example: trees with simulated data (ESL, Example 8.7.1)

Simulation:

N = 30 samples with p = 5 features.

Features from a standard Gaussian distribution with pairwise

correlation 0.95.

Y generated according to

P (Y = 1|X1 ≤ 0.5) = 0.2

P (Y = 1|X1 > 0.5) = 0.8.

A test sample of size 2, 000 was also generated using the same

model.

The test error for the original tree and the bagged tree are

reported.

4/14



Example (cont.)

Bootstrap trees:

ESL, Figure 8.9.

5/14



Example (cont.)

Test error:

Errors for the bagging example. (ESL, Figure 8.10.)

The orange points correspond to the consensus vote, while the green points average the probabilities.

Out-of-bag error: Mean prediction error on each training sample

xi, using only the trees that did not have xi in their bootstrap

sample.

Can be used to approximate the prediction error.

6/14



Example (cont.)

Test error:

Errors for the bagging example. (ESL, Figure 8.10.)

The orange points correspond to the consensus vote, while the green points average the probabilities.

Out-of-bag error: Mean prediction error on each training sample

xi, using only the trees that did not have xi in their bootstrap

sample.

Can be used to approximate the prediction error.
6/14



Random forests

Idea of bagging: average many noisy but approximately

unbiased models, and hence reduce the variance.

However, the bootstrap trees are generally correlated.

Random forests improve the variance reduction of bagging by

reducing the correlation between the trees.

Achieved in the tree-growing process through random selection

of the input variables.

Popular method.

7/14



Random forests (cont.)

Random forests: Each time a split in a tree is considered, a

random selection of m predictors is chosen as split candidates from

the full set of p predictors.

Typical value for m is
√
p.

We construct T1, . . . , TB trees using that method on bootstrap

samples. The random forest (regression) predictor is

f̂Brf (x) =
1

B

B∑
b=1

Tb(x).

For classi�cation: use majority vote.

8/14



Random forests (cont.)

Random forests: Each time a split in a tree is considered, a

random selection of m predictors is chosen as split candidates from

the full set of p predictors.

Typical value for m is
√
p.

We construct T1, . . . , TB trees using that method on bootstrap

samples. The random forest (regression) predictor is

f̂Brf (x) =
1

B

B∑
b=1

Tb(x).

For classi�cation: use majority vote.

8/14



Random forests (cont.)

Random forests: Each time a split in a tree is considered, a

random selection of m predictors is chosen as split candidates from

the full set of p predictors.

Typical value for m is
√
p.

We construct T1, . . . , TB trees using that method on bootstrap

samples. The random forest (regression) predictor is

f̂Brf (x) =
1

B

B∑
b=1

Tb(x).

For classi�cation: use majority vote.
8/14



Example (Izenman, 2013)

Diagnostic classi�cation of four childhood tumors (Khan et al.,

2001):

Small, round, blue-cell tumors (SRBCTs) of childhood.

Four types of SRBCTs (EWS, BL, NB, RMS).

Tumors have a similar appearance.

Getting the diagnosis correct impacts directly upon the type of

treatment, therapy, and prognosis the patient receives.

Currently, no single clinical test that can discriminate between

these cancers.

Data:

83 cases (29 EWS, 11 BL, 18 NB, 25 RMS).

Gene expression data for 6, 567 genes, reduced to 2, 308 by

requiring a minimum intensity.

research.nhgri.nih.gov/microarray/Supplement.

A random forest was applied to these data using 500 fully grown

trees with m = 25 variables at each split.

Able to get a 0% Out-of-bag misclassi�cation rate.

9/14

research.nhgri.nih.gov/microarray/Supplement


Example (Izenman, 2013)

Diagnostic classi�cation of four childhood tumors (Khan et al.,

2001):

Small, round, blue-cell tumors (SRBCTs) of childhood.

Four types of SRBCTs (EWS, BL, NB, RMS).

Tumors have a similar appearance.

Getting the diagnosis correct impacts directly upon the type of

treatment, therapy, and prognosis the patient receives.

Currently, no single clinical test that can discriminate between

these cancers.

Data:

83 cases (29 EWS, 11 BL, 18 NB, 25 RMS).

Gene expression data for 6, 567 genes, reduced to 2, 308 by

requiring a minimum intensity.

research.nhgri.nih.gov/microarray/Supplement.

A random forest was applied to these data using 500 fully grown

trees with m = 25 variables at each split.

Able to get a 0% Out-of-bag misclassi�cation rate.

9/14

research.nhgri.nih.gov/microarray/Supplement


Example (Izenman, 2013)

Diagnostic classi�cation of four childhood tumors (Khan et al.,

2001):

Small, round, blue-cell tumors (SRBCTs) of childhood.

Four types of SRBCTs (EWS, BL, NB, RMS).

Tumors have a similar appearance.

Getting the diagnosis correct impacts directly upon the type of

treatment, therapy, and prognosis the patient receives.

Currently, no single clinical test that can discriminate between

these cancers.

Data:

83 cases (29 EWS, 11 BL, 18 NB, 25 RMS).

Gene expression data for 6, 567 genes, reduced to 2, 308 by

requiring a minimum intensity.

research.nhgri.nih.gov/microarray/Supplement.

A random forest was applied to these data using 500 fully grown

trees with m = 25 variables at each split.

Able to get a 0% Out-of-bag misclassi�cation rate.

9/14

research.nhgri.nih.gov/microarray/Supplement


Example (Izenman, 2013)

Diagnostic classi�cation of four childhood tumors (Khan et al.,

2001):

Small, round, blue-cell tumors (SRBCTs) of childhood.

Four types of SRBCTs (EWS, BL, NB, RMS).

Tumors have a similar appearance.

Getting the diagnosis correct impacts directly upon the type of

treatment, therapy, and prognosis the patient receives.

Currently, no single clinical test that can discriminate between

these cancers.

Data:

83 cases (29 EWS, 11 BL, 18 NB, 25 RMS).

Gene expression data for 6, 567 genes, reduced to 2, 308 by

requiring a minimum intensity.

research.nhgri.nih.gov/microarray/Supplement.

A random forest was applied to these data using 500 fully grown

trees with m = 25 variables at each split.

Able to get a 0% Out-of-bag misclassi�cation rate.
9/14

research.nhgri.nih.gov/microarray/Supplement


Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.

10/14



Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.

10/14



Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n.

Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.

10/14



Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.

For b = 1, . . . , B:
1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.

10/14



Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).

Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.

10/14



Boosting

Like bagging, boosting is a general approach that can be applied to many

models. Combines weak learners into a single strong learner.

Boosting: Recursively �t trees to residuals. (Compensate the

shortcoming of previous model.)

Input: (yi, xi) ∈ Rp+1, i = 1, . . . , n. Initialize f̂(x) = 0, ri = yi.
For b = 1, . . . , B:

1 Fit a tree estimator f̂ b with d splits to the training data.
2 Update the estimator using:

f̂(x)← f̂(x) + λ · f̂ b(x).
3 Update the residuals:

ri ← ri − λ · f̂ b(xi).
Output: Boosted tree:

f̂(x) =

B∑
i=1

λf̂ b(x).

Note: λ > 0 is a learning rate.
10/14



Boosting (cont.)

Can use many small trees (by choosing d small) and learn slowly (λ
small) to avoid over�tting.

Choosing the parameters:

1 Number of trees B: choose by cross-validation.

2 Number of splits: can use a small value (e.g. d = 1).

3 Learning rate: can use 0.01, 0.001. Note: A small λ will

generally require a larger B. . .

Gradient boosting: More generally, one can work with a general

loss function (instead of sum of squares) and replace the residuals

with the (negative) of the gradient of the loss function.

11/14



Boosting (cont.)

Can use many small trees (by choosing d small) and learn slowly (λ
small) to avoid over�tting.

Choosing the parameters:

1 Number of trees B: choose by cross-validation.

2 Number of splits: can use a small value (e.g. d = 1).

3 Learning rate: can use 0.01, 0.001. Note: A small λ will

generally require a larger B. . .

Gradient boosting: More generally, one can work with a general

loss function (instead of sum of squares) and replace the residuals

with the (negative) of the gradient of the loss function.

11/14



Boosting (cont.)

Can use many small trees (by choosing d small) and learn slowly (λ
small) to avoid over�tting.

Choosing the parameters:

1 Number of trees B: choose by cross-validation.

2 Number of splits: can use a small value (e.g. d = 1).

3 Learning rate: can use 0.01, 0.001. Note: A small λ will

generally require a larger B. . .

Gradient boosting: More generally, one can work with a general

loss function (instead of sum of squares) and replace the residuals

with the (negative) of the gradient of the loss function.

11/14



Relative importance of predictor variables

The previous methodologies can improve decision trees

considerably.

However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help

understand a model with multiple trees.

Let T be a (binary) decision tree with J − 1 internal nodes.

At each internal node t, a variable Xv(t) is split, resulting in an

improvement ι̂2t in squared error.

We de�ne a measure of relevance of Xl by

I2l (T ) :=
J−1∑
t=1

ι̂2t · I(v(t) = l).

In other words, we add-up the improvements at the nodes

where Xl is split.

12/14



Relative importance of predictor variables

The previous methodologies can improve decision trees

considerably.

However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help

understand a model with multiple trees.

Let T be a (binary) decision tree with J − 1 internal nodes.

At each internal node t, a variable Xv(t) is split, resulting in an

improvement ι̂2t in squared error.

We de�ne a measure of relevance of Xl by

I2l (T ) :=
J−1∑
t=1

ι̂2t · I(v(t) = l).

In other words, we add-up the improvements at the nodes

where Xl is split.

12/14



Relative importance of predictor variables

The previous methodologies can improve decision trees

considerably.

However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help

understand a model with multiple trees.

Let T be a (binary) decision tree with J − 1 internal nodes.

At each internal node t, a variable Xv(t) is split, resulting in an

improvement ι̂2t in squared error.

We de�ne a measure of relevance of Xl by

I2l (T ) :=
J−1∑
t=1

ι̂2t · I(v(t) = l).

In other words, we add-up the improvements at the nodes

where Xl is split.

12/14



Relative importance of predictor variables

The previous methodologies can improve decision trees

considerably.

However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help

understand a model with multiple trees.

Let T be a (binary) decision tree with J − 1 internal nodes.

At each internal node t, a variable Xv(t) is split, resulting in an

improvement ι̂2t in squared error.

We de�ne a measure of relevance of Xl by

I2l (T ) :=
J−1∑
t=1

ι̂2t · I(v(t) = l).

In other words, we add-up the improvements at the nodes

where Xl is split.

12/14



Relative importance of predictor variables

The previous methodologies can improve decision trees

considerably.

However, we lose the nice interpretability of decision trees.

A relative importance of each predictor can be computed to help

understand a model with multiple trees.

Let T be a (binary) decision tree with J − 1 internal nodes.

At each internal node t, a variable Xv(t) is split, resulting in an

improvement ι̂2t in squared error.

We de�ne a measure of relevance of Xl by

I2l (T ) :=
J−1∑
t=1

ι̂2t · I(v(t) = l).

In other words, we add-up the improvements at the nodes

where Xl is split.

12/14



Relative importance of predictor variables (cont.)

Similarly, in a model obtained from M trees (e.g. bagging,

random forest), we use:

I2l =
1

M

M∑
m=1

I2l (Tm).

Taking the square root of the relevance measure, we obtain the

relevance of Xl.

Typically, we do not report the actual relevance of a variable. We

rather report the percentage of relevance of a given variable with

respect to the variable with the largest relevance.

13/14



Relative importance of predictor variables (cont.)

Similarly, in a model obtained from M trees (e.g. bagging,

random forest), we use:

I2l =
1

M

M∑
m=1

I2l (Tm).

Taking the square root of the relevance measure, we obtain the

relevance of Xl.

Typically, we do not report the actual relevance of a variable. We

rather report the percentage of relevance of a given variable with

respect to the variable with the largest relevance.

13/14



Relative importance of predictor variables (cont.)

Similarly, in a model obtained from M trees (e.g. bagging,

random forest), we use:

I2l =
1

M

M∑
m=1

I2l (Tm).

Taking the square root of the relevance measure, we obtain the

relevance of Xl.

Typically, we do not report the actual relevance of a variable. We

rather report the percentage of relevance of a given variable with

respect to the variable with the largest relevance.

13/14



Relative importance of predictor for the spam data

ESL, Figure 10.6.
14/14


