
MATH 567: Mathematical Techniques in Data
Science

Clustering I

Dominique Guillot

Departments of Mathematical Sciences

University of Delaware

May 1, 2017

1/16

Supervised and unsupervised learning

Supervised learning problems:

Data (X,Y) is �labelled� (input/output) with joint density
P (X,Y).

We are mainly interested by the conditional density P (Y |X).

Example: regression problems, classi�cation problems, etc..

Unsupervised learning problems:

Data X is not labelled and has density P (X).

We want to infer properties of P (X) without the help of a
�supervisor� or �teacher�.

Examples: Density estimation, PCA, ICA, sparse autoencoder,
clustering, etc..

2/16

Supervised and unsupervised learning

Supervised learning problems:

Data (X,Y) is �labelled� (input/output) with joint density
P (X,Y).

We are mainly interested by the conditional density P (Y |X).

Example: regression problems, classi�cation problems, etc..

Unsupervised learning problems:

Data X is not labelled and has density P (X).

We want to infer properties of P (X) without the help of a
�supervisor� or �teacher�.

Examples: Density estimation, PCA, ICA, sparse autoencoder,
clustering, etc..

2/16

Clustering

→

Wikipedia - Chire.

Unsupervised problem.

Work only with
features/independent variables.

Want to label points according to
a measure of their similarity.

3/16

What is a cluster?

We try to partition observations into �clusters� such that:

Intra-cluster distance is minimized.
Inter-cluster distance is maximized.

For graphs, we want vertices in the same cluster to be highly connected,

and vertices in di�erent clusters to be mostly disconnected.
4/16

The K-means algorithm

Goes back to Hugo Steinhaus (of the Banach�Steinhaus
theorem) in 1957.

Steinhaus authored over 170 works. Un-

like his student, Stefan Banach, who tended

to specialize narrowly in the �eld of func-

tional analysis, Steinhaus made contribu-

tions to a wide range of mathematical

sub-disciplines, including geometry, proba-

bility theory, functional analysis, theory of

trigonometric and Fourier series as well as

mathematical logic. He also wrote in the

area of applied mathematics and enthusi-

astically collaborated with engineers, geolo-

gists, economists, physicians, biologists and,

in Kac's words, "even lawyers".
Source: Wikipedia.

5/16

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi =
1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/16

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi =
1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/16

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi =
1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/16

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi =
1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/16

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi =
1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/16

The K-means algorithm (cont.)

The K-means algorithm is a popular algorithm to cluster a set of
points in Rp.

We are given n observations x1, x2, . . . , xn ∈ Rp.

We are given a number of clusters K.

We want a partition Ŝ = {S1, . . . , SK} of {x1, . . . , xn} such
that

Ŝ = argmin
S

K∑
i=1

∑
xj∈Si

‖xj − µi‖2,

where µi =
1
|Si|

∑
xj∈Si

xj is the mean of the points in Si (the

�center� of Si).

The above problem is NP hard.

E�cient approximation algorithms exist (converge to a local
minimum though).

6/16

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

7/16

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.

Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

7/16

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

7/16

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:

1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

7/16

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

7/16

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.

7/16

Lloyds's algorithm

Lloyds's algorithm for K-means clustering

Denote by C(i) the cluster assigned to xi.
Lloyds's algorithm provides a heuristic method for optimizing
the K-means objective function.

Start with a �cluster centers� assignment m
(0)
1 , . . . ,m

(0)
K . Set

t := 0. Repeat:
1 Assign each point xj to the cluster whose mean is closest to
xj :

S
(t)
i := {xj : ‖xj −m(t)

i ‖
2 ≤ ‖xj −m(t)

k ‖
2 ∀k = 1, . . . ,K}.

2 Compute the average m
(t+1)
i of the observations in cluster i:

m
(t+1)
i :=

1

|S(t)
i |

∑
xj∈S

(t)
i

xj .

3 t← t+ 1.

Until convergence.
7/16

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global

optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

8/16

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.

Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global

optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

8/16

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global

optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

8/16

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global

optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

8/16

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global

optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

8/16

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global

optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

8/16

Convergence of Lloyds's algorithm

Note that Lloyds's algorithm uses a greedy approach to sequentially
minimize:

K∑
i=1

∑
xj∈Si

‖xj −mi‖2.

Both steps of the algorithm decrease the objective.
Thus, Lloyds's algorithm converges a local minimum of the
objective function.

There is no guarantee that Lloyds' algorithm will �nd the global

optimum.

As a result, we use di�erent starting points (i.e., di�erent choices

for the initial means m
(0)
i).

Common initialization methods:
1 The Forgy method: Pick K observations at random from
{x1, . . . , xn} and use these as the initial means.

2 Random partition: Randomly assign a cluster to each
observation and compute the mean of each cluster.

8/16

Illustration of the K-means algorithm

100 random points in R2.

The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com

9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com

9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
9/16

Illustration of the K-means algorithm

100 random points in R2.
The algorithm converges in 7 iterations (with a random
centers initialization).

Source: https://datasciencelab.wordpress.com
9/16

Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?

Experiment:

Find 10 clusters using K-means.

Compute the percentage pij of samples labelled i having �true�
label j.

pij =

0.00 0.00 2.45 0.38 0.94 0.57 0.00 83.96 0.19 11.51
14.78 0.00 0.77 0.26 0.77 14.40 68.64 0.00 0.39 0.00
1.08 0.46 7.57 11.13 0.77 10.66 0.31 0.62 66.46 0.93
90.37 0.00 2.28 0.18 0.18 1.23 5.08 0.00 0.70 0.00
88.96 0.00 0.51 0.34 0.00 2.72 7.13 0.00 0.34 0.00
1.08 0.00 86.15 1.85 2.15 1.38 5.54 0.31 1.54 0.00
1.41 0.00 5.66 1.13 62.23 5.66 1.41 3.25 1.41 17.82
1.63 0.00 3.69 59.22 0.00 32.00 0.00 0.00 3.25 0.22
0.00 93.03 0.37 0.09 3.90 0.00 0.84 0.28 1.02 0.46
0.00 0.12 1.10 1.46 16.93 0.61 0.24 20.46 4.99 54.08

10/16

Example: clustering the zip data

Is there a nice cluster structure in the zip dataset?

Experiment:

Find 10 clusters using K-means.

Compute the percentage pij of samples labelled i having �true�
label j.

pij =

0.00 0.00 2.45 0.38 0.94 0.57 0.00 83.96 0.19 11.51
14.78 0.00 0.77 0.26 0.77 14.40 68.64 0.00 0.39 0.00
1.08 0.46 7.57 11.13 0.77 10.66 0.31 0.62 66.46 0.93
90.37 0.00 2.28 0.18 0.18 1.23 5.08 0.00 0.70 0.00
88.96 0.00 0.51 0.34 0.00 2.72 7.13 0.00 0.34 0.00
1.08 0.00 86.15 1.85 2.15 1.38 5.54 0.31 1.54 0.00
1.41 0.00 5.66 1.13 62.23 5.66 1.41 3.25 1.41 17.82
1.63 0.00 3.69 59.22 0.00 32.00 0.00 0.00 3.25 0.22
0.00 93.03 0.37 0.09 3.90 0.00 0.84 0.28 1.02 0.46
0.00 0.12 1.10 1.46 16.93 0.61 0.24 20.46 4.99 54.08

10/16

Spectral clustering: overview

We saw how K-means can be used to cluster points in Rp.

Spectral clustering:

Very popular clustering method.

Often outperforms other methods such as K-means.

Can be used for various �types� of data (not only points in Rp).

Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1 Construct a similarity matrix measuring the similarity of pairs
of objects.

2 Use the similarity matrix to construct a (weighted or
unweighted) graph.

3 Compute eigenvectors of the graph Laplacian (builds an
embedding of the graph into Rp).

4 Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.

11/16

Spectral clustering: overview

We saw how K-means can be used to cluster points in Rp.

Spectral clustering:

Very popular clustering method.

Often outperforms other methods such as K-means.

Can be used for various �types� of data (not only points in Rp).

Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1 Construct a similarity matrix measuring the similarity of pairs
of objects.

2 Use the similarity matrix to construct a (weighted or
unweighted) graph.

3 Compute eigenvectors of the graph Laplacian (builds an
embedding of the graph into Rp).

4 Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.

11/16

Spectral clustering: overview

We saw how K-means can be used to cluster points in Rp.

Spectral clustering:

Very popular clustering method.

Often outperforms other methods such as K-means.

Can be used for various �types� of data (not only points in Rp).

Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1 Construct a similarity matrix measuring the similarity of pairs
of objects.

2 Use the similarity matrix to construct a (weighted or
unweighted) graph.

3 Compute eigenvectors of the graph Laplacian (builds an
embedding of the graph into Rp).

4 Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.

11/16

Spectral clustering: overview

We saw how K-means can be used to cluster points in Rp.

Spectral clustering:

Very popular clustering method.

Often outperforms other methods such as K-means.

Can be used for various �types� of data (not only points in Rp).

Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1 Construct a similarity matrix measuring the similarity of pairs
of objects.

2 Use the similarity matrix to construct a (weighted or
unweighted) graph.

3 Compute eigenvectors of the graph Laplacian (builds an
embedding of the graph into Rp).

4 Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.

11/16

Spectral clustering: overview

We saw how K-means can be used to cluster points in Rp.

Spectral clustering:

Very popular clustering method.

Often outperforms other methods such as K-means.

Can be used for various �types� of data (not only points in Rp).

Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1 Construct a similarity matrix measuring the similarity of pairs
of objects.

2 Use the similarity matrix to construct a (weighted or
unweighted) graph.

3 Compute eigenvectors of the graph Laplacian (builds an
embedding of the graph into Rp).

4 Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.

11/16

Spectral clustering: overview

We saw how K-means can be used to cluster points in Rp.

Spectral clustering:

Very popular clustering method.

Often outperforms other methods such as K-means.

Can be used for various �types� of data (not only points in Rp).

Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1 Construct a similarity matrix measuring the similarity of pairs
of objects.

2 Use the similarity matrix to construct a (weighted or
unweighted) graph.

3 Compute eigenvectors of the graph Laplacian (builds an
embedding of the graph into Rp).

4 Cluster the graph using the eigenvectors of the graph
Laplacian using the K-means algorithm.

11/16

Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .

Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=
n∑

j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.

12/16

Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .
Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=
n∑

j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.

12/16

Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .
Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=
n∑

j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.

12/16

Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .
Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=

n∑
j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.

12/16

Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .
Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=

n∑
j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.

12/16

Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .
Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=

n∑
j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.

12/16

Notation

We will use the following notation/conventions:

G = (V,E) a graph with vertex set V = {v1, . . . , vn} and
edge set E ⊂ V × V .
Each edge carries a weight wij ≥ 0.

The adjacency matrix of G is W =WG = (wij)
n
i,j=1. We will

assume W is symmetric (undirected graphs).

The degree of vi is

di :=

n∑
j=1

wij .

The degree matrix of G is D := diag(d1, . . . , dn).

We denote the complement of A ⊂ V by A.

If A ⊂ V , then we let 1A = (f1, . . . , fn)
T ∈ Rn, where fi = 1

if vi ∈ A and 0 otherwise.

12/16

Similarity graphs

We assume we are given a measure of similarity s between data
points x1, . . . , xn ∈ X :

s : X × X → [0,∞).

We denote by sij := s(xi, xj) the measure of similarity between
xi and xj .

Equivalently, we may assume we have a measure of distance
between data points (e.g. (X , d) is a metric space).

Let dij := d(xi, xj), the distance between xi and xj .

From dij (or sij), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.

13/16

Similarity graphs

We assume we are given a measure of similarity s between data
points x1, . . . , xn ∈ X :

s : X × X → [0,∞).

We denote by sij := s(xi, xj) the measure of similarity between
xi and xj .

Equivalently, we may assume we have a measure of distance
between data points (e.g. (X , d) is a metric space).

Let dij := d(xi, xj), the distance between xi and xj .

From dij (or sij), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.

13/16

Similarity graphs

We assume we are given a measure of similarity s between data
points x1, . . . , xn ∈ X :

s : X × X → [0,∞).

We denote by sij := s(xi, xj) the measure of similarity between
xi and xj .

Equivalently, we may assume we have a measure of distance
between data points (e.g. (X , d) is a metric space).

Let dij := d(xi, xj), the distance between xi and xj .

From dij (or sij), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.

13/16

Similarity graphs

We assume we are given a measure of similarity s between data
points x1, . . . , xn ∈ X :

s : X × X → [0,∞).

We denote by sij := s(xi, xj) the measure of similarity between
xi and xj .

Equivalently, we may assume we have a measure of distance
between data points (e.g. (X , d) is a metric space).

Let dij := d(xi, xj), the distance between xi and xj .

From dij (or sij), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.

13/16

Similarity graphs

We assume we are given a measure of similarity s between data
points x1, . . . , xn ∈ X :

s : X × X → [0,∞).

We denote by sij := s(xi, xj) the measure of similarity between
xi and xj .

Equivalently, we may assume we have a measure of distance
between data points (e.g. (X , d) is a metric space).

Let dij := d(xi, xj), the distance between xi and xj .

From dij (or sij), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.

13/16

Similarity graphs

We assume we are given a measure of similarity s between data
points x1, . . . , xn ∈ X :

s : X × X → [0,∞).

We denote by sij := s(xi, xj) the measure of similarity between
xi and xj .

Equivalently, we may assume we have a measure of distance
between data points (e.g. (X , d) is a metric space).

Let dij := d(xi, xj), the distance between xi and xj .

From dij (or sij), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.

13/16

Similarity graphs (cont.)

Vertex set = {v1, . . . , vn} where n is the number of data points.

1 The ε-neighborhood graph: Connect all points whose
pairwise distances are smaller than some ε > 0. We usually
don't weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

2 The k-nearest neighbor graph: The goal is to connect vi to
vj if xj is among the k nearest neighbords of xi. However,
this leads to a directed graph. We therefore de�ne:

the k-nearest neighbor graph: vi is adjacent to vj i� xj is

among the k nearest neighbords of xi OR xi is among the k
nearest neighbords of xj .
the mutual k-nearest neighbor graph: vi is adjacent to vj i�

xj is among the k nearest neighbords of xi AND xi is among

the k nearest neighbors of xj .

We weight the edges by the similarity of their endpoints.

14/16

Similarity graphs (cont.)

Vertex set = {v1, . . . , vn} where n is the number of data points.

1 The ε-neighborhood graph: Connect all points whose
pairwise distances are smaller than some ε > 0. We usually
don't weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

2 The k-nearest neighbor graph: The goal is to connect vi to
vj if xj is among the k nearest neighbords of xi. However,
this leads to a directed graph. We therefore de�ne:

the k-nearest neighbor graph: vi is adjacent to vj i� xj is

among the k nearest neighbords of xi OR xi is among the k
nearest neighbords of xj .
the mutual k-nearest neighbor graph: vi is adjacent to vj i�

xj is among the k nearest neighbords of xi AND xi is among

the k nearest neighbors of xj .

We weight the edges by the similarity of their endpoints.

14/16

Similarity graphs (cont.)

Vertex set = {v1, . . . , vn} where n is the number of data points.

1 The ε-neighborhood graph: Connect all points whose
pairwise distances are smaller than some ε > 0. We usually
don't weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

2 The k-nearest neighbor graph: The goal is to connect vi to
vj if xj is among the k nearest neighbords of xi. However,
this leads to a directed graph. We therefore de�ne:

the k-nearest neighbor graph: vi is adjacent to vj i� xj is

among the k nearest neighbords of xi OR xi is among the k
nearest neighbords of xj .
the mutual k-nearest neighbor graph: vi is adjacent to vj i�

xj is among the k nearest neighbords of xi AND xi is among

the k nearest neighbors of xj .

We weight the edges by the similarity of their endpoints.

14/16

Similarity graphs (cont.)

Vertex set = {v1, . . . , vn} where n is the number of data points.

1 The ε-neighborhood graph: Connect all points whose
pairwise distances are smaller than some ε > 0. We usually
don't weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

2 The k-nearest neighbor graph: The goal is to connect vi to
vj if xj is among the k nearest neighbords of xi. However,
this leads to a directed graph. We therefore de�ne:

the k-nearest neighbor graph: vi is adjacent to vj i� xj is

among the k nearest neighbords of xi OR xi is among the k
nearest neighbords of xj .

the mutual k-nearest neighbor graph: vi is adjacent to vj i�

xj is among the k nearest neighbords of xi AND xi is among

the k nearest neighbors of xj .

We weight the edges by the similarity of their endpoints.

14/16

Similarity graphs (cont.)

Vertex set = {v1, . . . , vn} where n is the number of data points.

1 The ε-neighborhood graph: Connect all points whose
pairwise distances are smaller than some ε > 0. We usually
don't weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

2 The k-nearest neighbor graph: The goal is to connect vi to
vj if xj is among the k nearest neighbords of xi. However,
this leads to a directed graph. We therefore de�ne:

the k-nearest neighbor graph: vi is adjacent to vj i� xj is

among the k nearest neighbords of xi OR xi is among the k
nearest neighbords of xj .
the mutual k-nearest neighbor graph: vi is adjacent to vj i�

xj is among the k nearest neighbords of xi AND xi is among

the k nearest neighbors of xj .

We weight the edges by the similarity of their endpoints.

14/16

Similarity graphs (cont.)

Vertex set = {v1, . . . , vn} where n is the number of data points.

1 The ε-neighborhood graph: Connect all points whose
pairwise distances are smaller than some ε > 0. We usually
don't weight the edges. The graph is thus a simple graph
(unweighted, undirected graph containing no loops or multiple
edges).

2 The k-nearest neighbor graph: The goal is to connect vi to
vj if xj is among the k nearest neighbords of xi. However,
this leads to a directed graph. We therefore de�ne:

the k-nearest neighbor graph: vi is adjacent to vj i� xj is

among the k nearest neighbords of xi OR xi is among the k
nearest neighbords of xj .
the mutual k-nearest neighbor graph: vi is adjacent to vj i�

xj is among the k nearest neighbords of xi AND xi is among

the k nearest neighbors of xj .

We weight the edges by the similarity of their endpoints.

14/16

Similarity graphs (cont.)

3 The fully connected graph: Connect all points with edge
weights sij .

For example, one could use the Gaussian similarity

function to represent a local neighborhood relationships:

sij = s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)) (σ2 > 0).

Note: σ2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.

15/16

Similarity graphs (cont.)

3 The fully connected graph: Connect all points with edge
weights sij . For example, one could use the Gaussian similarity

function to represent a local neighborhood relationships:

sij = s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)) (σ2 > 0).

Note: σ2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.

15/16

Similarity graphs (cont.)

3 The fully connected graph: Connect all points with edge
weights sij . For example, one could use the Gaussian similarity

function to represent a local neighborhood relationships:

sij = s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)) (σ2 > 0).

Note: σ2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.

15/16

Graph Laplacians

There are three commonly used de�nitions of the graph Laplacian:

1 The unnormalized Laplacian is

L := D −W.

2 The normalized symmetric Laplacian is

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2.

3 The normalized �random walk� Laplacian is

Lrw := D−1L = I −D−1W.

We will see in the next lecture how these Laplacians can be used to
cluster graphs.

16/16

Graph Laplacians

There are three commonly used de�nitions of the graph Laplacian:

1 The unnormalized Laplacian is

L := D −W.

2 The normalized symmetric Laplacian is

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2.

3 The normalized �random walk� Laplacian is

Lrw := D−1L = I −D−1W.

We will see in the next lecture how these Laplacians can be used to
cluster graphs.

16/16

Graph Laplacians

There are three commonly used de�nitions of the graph Laplacian:

1 The unnormalized Laplacian is

L := D −W.

2 The normalized symmetric Laplacian is

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2.

3 The normalized �random walk� Laplacian is

Lrw := D−1L = I −D−1W.

We will see in the next lecture how these Laplacians can be used to
cluster graphs.

16/16

Graph Laplacians

There are three commonly used de�nitions of the graph Laplacian:

1 The unnormalized Laplacian is

L := D −W.

2 The normalized symmetric Laplacian is

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2.

3 The normalized �random walk� Laplacian is

Lrw := D−1L = I −D−1W.

We will see in the next lecture how these Laplacians can be used to
cluster graphs.

16/16

