# MATH 567: Mathematical Techniques in Data Science Clustering II 

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware
May 8, 2017

This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007.

## Spectral clustering: overview

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects (e.g. $\left.s_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right)$.

## Spectral clustering: overview

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects (e.g. $\left.s_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right)$.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.

## Spectral clustering: overview

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects (e.g. $\left.s_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right)$.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the (normalized or unnormalized) graph Laplacian:

$$
L=D-W, \quad L_{\mathrm{sym}}=D^{-1 / 2} L D^{-1 / 2}
$$

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects (e.g. $\left.s_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right)$.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the (normalized or unnormalized) graph Laplacian:

$$
L=D-W, \quad L_{\mathrm{sym}}=D^{-1 / 2} L D^{-1 / 2}
$$

(1) Construct a matrix containing the first $K$ eigenvectors of $L$ or $L_{\text {sym }}$ as columns.

Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects (e.g. $\left.s_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right)$.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the (normalized or unnormalized) graph Laplacian:

$$
L=D-W, \quad L_{\mathrm{sym}}=D^{-1 / 2} L D^{-1 / 2}
$$

(9) Construct a matrix containing the first $K$ eigenvectors of $L$ or $L_{\text {sym }}$ as columns.
(5) Each row identifies a vertex of the graph to a point in $\mathbb{R}^{K}$.


Overview of spectral clustering:
(1) Construct a similarity matrix measuring the similarity of pairs of objects (e.g. $\left.s_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right)$.
(2) Use the similarity matrix to construct a (weighted or unweighted) graph.
(3) Compute eigenvectors of the (normalized or unnormalized) graph Laplacian:

$$
L=D-W, \quad L_{\mathrm{sym}}=D^{-1 / 2} L D^{-1 / 2}
$$

(9) Construct a matrix containing the first $K$ eigenvectors of $L$ or $L_{\text {sym }}$ as columns.
(5) Each row identifies a vertex of the graph to a point in $\mathbb{R}^{K}$.

( Cluster those points using the $K$-means algorithm.

## Example

Let us try to cluster the following graph:

$A=\left(\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right), \quad L=\left(\begin{array}{cccccccc}3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 4 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & -1 & 3\end{array}\right)$
We have:
$v_{2}=(-0.3825277,-0.2470177,-0.3825277,-0.3825277,0.2470177,0.3825277,0.3825277,0.3825277)^{T}$.

## The unnormalized Laplacian

Proposition: The matrix $L$ satisfies the following properties:

## The unnormalized Laplacian

Proposition: The matrix $L$ satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$ :

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

## The unnormalized Laplacian

Proposition: The matrix $L$ satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$ :

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) $L$ is symmetric and positive semidefinite.

## The unnormalized Laplacian

Proposition: The matrix $L$ satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$ :

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) $L$ is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of $L$ with associated constant eigenvector $\mathbb{1}$.

## The unnormalized Laplacian

Proposition: The matrix $L$ satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$ :

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

(2) $L$ is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of $L$ with associated constant eigenvector $\mathbb{1}$.

Proof:

Proposition: The matrix $L$ satisfies the following properties:
(1) For any $f \in \mathbb{R}^{n}$ :

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
$$

(2) $L$ is symmetric and positive semidefinite.
(3) 0 is an eigenvalue of $L$ with associated constant eigenvector $\mathbb{1}$. Proof: To prove (1),

$$
\begin{aligned}
f^{T} L f=f^{T} D f-f^{T} W f & =\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j=1}^{n} w_{i j} f_{i} f_{j} \\
& =\frac{1}{2}\left(\sum_{i=1}^{n} d_{i} f_{i}^{2}-2 \sum_{i, j=1}^{n} w_{i j} f_{i} f_{j}+\sum_{j=1}^{n} d_{j} f_{j}^{2}\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
\end{aligned}
$$

(2) follows from (1). (3) is easy.

## The unnormalized Laplacian (cont.)

Proposition: Let $G$ be an undirected graph with non-negative weights. Then:

## The unnormalized Laplacian (cont.)

Proposition: Let $G$ be an undirected graph with non-negative weights. Then:
(1) The multiplicity $k$ of the eigenvalue 0 of $L$ equals the number of connected components $A_{1}, \ldots, A_{k}$ in the graph.

## The unnormalized Laplacian (cont.)

Proposition: Let $G$ be an undirected graph with non-negative weights. Then:
(1) The multiplicity $k$ of the eigenvalue 0 of $L$ equals the number of connected components $A_{1}, \ldots, A_{k}$ in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.

## The unnormalized Laplacian (cont.)

Proposition: Let $G$ be an undirected graph with non-negative weights. Then:
(1) The multiplicity $k$ of the eigenvalue 0 of $L$ equals the number of connected components $A_{1}, \ldots, A_{k}$ in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.
Proof:

Proposition: Let $G$ be an undirected graph with non-negative weights. Then:
(1) The multiplicity $k$ of the eigenvalue 0 of $L$ equals the number of connected components $A_{1}, \ldots, A_{k}$ in the graph.
(2) The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.
Proof: If $f$ is an eigenvector associated to $\lambda=0$, then

$$
0=f^{T} L f=\sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

It follows that $f_{i}=f_{j}$ whenever $w_{i j}>0$. Thus $f$ is constant on the connected components of $G$. We conclude that the eigenspace of 0 is contained in $\operatorname{span}\left(\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}\right)$. Conversely, it is not hard to see that each $\mathbb{1}_{A_{i}}$ is an eigenvector associated to 0 (write $L$ in block diagonal form).

Proposition: The normalized Laplacians satisfy the following properties:
(1) For every $f \in \mathbb{R}^{n}$, we have

$$
f^{T} L_{\mathrm{sym}} f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(\frac{f_{i}}{\sqrt{d_{i}}}-\frac{f_{j}}{\sqrt{d_{j}}}\right)^{2}
$$

(2) $\lambda$ is an eigenvalue of $L_{\mathrm{rw}}$ with eigenvector $u$ if and only if $\lambda$ is an eigenvalue of $L_{\text {sym }}$ with eigenvector $w=D^{1 / 2} u$.
(3) $\lambda$ is an eigenvalue of $L_{\mathrm{rw}}$ with eigenvector $u$ if and only if $\lambda$ and $u$ solve the generalized eigenproblem $L u=\lambda D u$.

Proof: The proof of (1) is similar to the proof of the analogous result for the unnormalized Laplacian. (2) and (3) follow easily by using appropriate rescalings.

Proposition: Let $G$ be an undirected graph with non-negative weights. Then:
(1) The multiplicity $k$ of the eigenvalue 0 of both $L_{\mathrm{sym}}$ and $L_{\mathrm{rw}}$ equals the number of connected components $A_{1}, \ldots, A_{k}$ in the graph.
(2) For $L_{\mathrm{rw}}$, the eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{i}}, i=1, \ldots, k$.
(3) For $L_{\text {sym }}$, the eigenspace of eigenvalue 0 is spanned by the vectors $D^{1 / 2} \mathbb{1}_{A_{i}}, i=1, \ldots, k$.
Proof: Similar to the proof of the analogous result for the unnormalized Laplacian.

## Graph cuts

- $G$ graph with (weighted) adjacency matrix $W=\left(w_{i j}\right)$.
- We define:

$$
W(A, B):=\sum_{i \in A, j \in B} w_{i j} .
$$

- $|A|:=$ number of vertices in $A$.
- $\operatorname{vol}(A):=\sum_{i \in A} d_{i}$.


## Graph cuts

- $G$ graph with (weighted) adjacency matrix $W=\left(w_{i j}\right)$.
- We define:

$$
W(A, B):=\sum_{i \in A, j \in B} w_{i j} .
$$

- $|A|:=$ number of vertices in $A$.
- $\operatorname{vol}(A):=\sum_{i \in A} d_{i}$.

Given a partition $A_{1}, \ldots, A_{k}$ of the vertices of $G$, we let

$$
\operatorname{cut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} W\left(A_{i}, \bar{A}_{i}\right)
$$

## Graph cuts

- $G$ graph with (weighted) adjacency matrix $W=\left(w_{i j}\right)$.
- We define:

$$
W(A, B):=\sum_{i \in A, j \in B} w_{i j} .
$$

- $|A|:=$ number of vertices in $A$.
- $\operatorname{vol}(A):=\sum_{i \in A} d_{i}$.

Given a partition $A_{1}, \ldots, A_{k}$ of the vertices of $G$, we let

$$
\operatorname{cut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} W\left(A_{i}, \bar{A}_{i}\right)
$$

The min-cut problem consists of solving:

$$
\min _{\substack{V=A_{1} \cup \cdots \cup A_{k} \\ A_{i} \cap A_{j}=\emptyset \quad \forall i \neq j}} \operatorname{cut}\left(A_{1}, \ldots, A_{k}\right) .
$$

## Graph cuts (cont.)

- The min-cut problem can be solved efficiently when $k=2$ (see Stoer and Wagner 1997).


## Graph cuts (cont.)

- The min-cut problem can be solved efficiently when $k=2$ (see Stoer and Wagner 1997).
- In practice it often does not lead to satisfactory partitions.


## Graph cuts (cont.)

- The min-cut problem can be solved efficiently when $k=2$ (see Stoer and Wagner 1997).
- In practice it often does not lead to satisfactory partitions.
- In many cases, the solution of min-cut simply separates one individual vertex from the rest of the graph.



## Graph cuts (cont.)

- The min-cut problem can be solved efficiently when $k=2$ (see Stoer and Wagner 1997).
- In practice it often does not lead to satisfactory partitions.
- In many cases, the solution of min-cut simply separates one individual vertex from the rest of the graph.

- We would like clusters to have a reasonably large number of points.


## Graph cuts (cont.)

- The min-cut problem can be solved efficiently when $k=2$ (see Stoer and Wagner 1997).
- In practice it often does not lead to satisfactory partitions.
- In many cases, the solution of min-cut simply separates one individual vertex from the rest of the graph.

- We would like clusters to have a reasonably large number of points.
- We therefore modify the min-cut problem to enforce such constraints.


## Balanced cuts

The two most common objective functions that are used as a replacement to the min-cut objective are:
(1) RatioCut (Hagen and Kahng, 1992):

$$
\operatorname{RatioCut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}
$$

## Balanced cuts

The two most common objective functions that are used as a replacement to the min-cut objective are:
(1) RatioCut (Hagen and Kahng, 1992):

$$
\operatorname{RatioCut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}
$$

(2) Normalized cut (Shi and Malik, 2000):

$$
\operatorname{Ncut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}
$$

The two most common objective functions that are used as a replacement to the min-cut objective are:
(1) RatioCut (Hagen and Kahng, 1992):

$$
\operatorname{RatioCut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}
$$

(2) Normalized cut (Shi and Malik, 2000):

$$
\operatorname{Ncut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}
$$

- Note: both objective functions take larger values when the clusters $A_{i}$ are "small".

The two most common objective functions that are used as a replacement to the min-cut objective are:
(1) RatioCut (Hagen and Kahng, 1992):

$$
\operatorname{RatioCut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}
$$

(2) Normalized cut (Shi and Malik, 2000):

$$
\operatorname{Ncut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}
$$

- Note: both objective functions take larger values when the clusters $A_{i}$ are "small".
- Resulting clusters are more "balanced".

The two most common objective functions that are used as a replacement to the min-cut objective are:
(1) RatioCut (Hagen and Kahng, 1992):

$$
\operatorname{RatioCut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}
$$

(2) Normalized cut (Shi and Malik, 2000):

$$
\operatorname{Ncut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}
$$

- Note: both objective functions take larger values when the clusters $A_{i}$ are "small".
- Resulting clusters are more "balanced".
- However, the resulting problems are NP hard - see Wagner and Wagner (1993).


## Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the Normalized cut problems.

## Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the Normalized cut problems.
Strategy:
(1) Express the original problem as a linear algebra problem involving discrete/combinatorial constraints.

Spectral clustering provides a way to relax the RatioCut and the Normalized cut problems.
Strategy:
(1) Express the original problem as a linear algebra problem involving discrete/combinatorial constraints.
(2) Relax/remove the constraints.

## Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the Normalized cut problems.
Strategy:
(1) Express the original problem as a linear algebra problem involving discrete/combinatorial constraints.
(2) Relax/remove the constraints.

RatioCut with $k=2$ : solve

$$
\min _{A \subset V} \operatorname{RatioCut}(A, \bar{A})
$$

## Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the Normalized cut problems.
Strategy:
(1) Express the original problem as a linear algebra problem involving discrete/combinatorial constraints.
(2) Relax/remove the constraints.

RatioCut with $k=2$ : solve

$$
\min _{A \subset V} \operatorname{RatioCut}(A, \bar{A}) .
$$

Given $A \subset V$, let $f \in \mathbb{R}^{n}$ be given by

$$
f_{i}:= \begin{cases}\sqrt{|\bar{A}| /|A|} & \text { if } v_{i} \in A \\ -\sqrt{|A| /|\bar{A}|} & \text { if } v_{i} \notin A .\end{cases}
$$

## Relaxing RatioCut

Let $L=D-W$ be the (unnormalized) Laplacian of $G$. Then
$f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}$
$=\frac{1}{2} \sum_{i \in A, j \in \bar{A}} w_{i j}\left(\sqrt{\frac{|\bar{A}|}{|A|}}+\sqrt{\frac{|A|}{|\bar{A}|}}\right)^{2}+\frac{1}{2} \sum_{i \in \bar{A}, j \in A} w_{i j}\left(-\sqrt{\frac{|\bar{A}|}{|A|}}-\sqrt{\frac{|A|}{|\bar{A}|}}\right)^{2}$
$=W(A, \bar{A})\left(2+\frac{|\bar{A}|}{|A|}+\frac{|A|}{|\bar{A}|}\right)$
$=W(A, \bar{A})\left(\frac{|A|+|\bar{A}|}{|A|}+\frac{|A|+|\bar{A}|}{|\bar{A}|}\right)$
$=|V| \cdot \frac{1}{2}\left(\frac{W(A, \bar{A})}{|A|}+\frac{W(\bar{A}, A)}{|\bar{A}|}\right)$
$=|V| \cdot \operatorname{RatioCut}(A, \bar{A})$.
since $|A|+|\bar{A}|=|V|$, and $W(A, \bar{A})=W(\bar{A}, A)$.

## Relaxing RatioCut (cont.)

- We showed:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=|V| \cdot \operatorname{RatioCut}(A, \bar{A})
$$

## Relaxing RatioCut (cont.)

- We showed:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=|V| \cdot \operatorname{RatioCut}(A, \bar{A})
$$

- Moreover, note that

$$
\sum_{i=1}^{n} f_{i}=\sum_{i \in A} \sqrt{\frac{|\bar{A}|}{|A|}}-\sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}}=|A| \cdot \sqrt{\frac{|\bar{A}|}{|A|}}-|\bar{A}| \cdot \sqrt{\frac{|A|}{|\bar{A}|}}=0
$$

## Relaxing RatioCut (cont.)

- We showed:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=|V| \cdot \operatorname{RatioCut}(A, \bar{A})
$$

- Moreover, note that

$$
\sum_{i=1}^{n} f_{i}=\sum_{i \in A} \sqrt{\frac{|\bar{A}|}{|A|}}-\sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}}=|A| \cdot \sqrt{\frac{|\bar{A}|}{|A|}}-|\bar{A}| \cdot \sqrt{\frac{|A|}{|\bar{A}|}}=0
$$

Thus $f \perp \mathbb{1}$.

## Relaxing RatioCut (cont.)

- We showed:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=|V| \cdot \operatorname{RatioCut}(A, \bar{A})
$$

- Moreover, note that

$$
\sum_{i=1}^{n} f_{i}=\sum_{i \in A} \sqrt{\frac{|\bar{A}|}{|A|}}-\sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}}=|A| \cdot \sqrt{\frac{|\bar{A}|}{|A|}}-|\bar{A}| \cdot \sqrt{\frac{|A|}{|\bar{A}|}}=0
$$

Thus $f \perp \mathbb{1}$.

- Finally,

$$
\|f\|_{2}^{2}=\sum_{i=1}^{n} f_{i}^{2}=|A| \cdot \frac{|\bar{A}|}{|A|}+|\bar{A}| \cdot \frac{|A|}{|\bar{A}|}=|V|=n .
$$

## Relaxing RatioCut (cont.)

- We showed:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=|V| \cdot \operatorname{RatioCut}(A, \bar{A})
$$

- Moreover, note that

$$
\sum_{i=1}^{n} f_{i}=\sum_{i \in A} \sqrt{\frac{|\bar{A}|}{|A|}}-\sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}}=|A| \cdot \sqrt{\frac{|\bar{A}|}{|A|}}-|\bar{A}| \cdot \sqrt{\frac{|A|}{|\bar{A}|}}=0 .
$$

Thus $f \perp \mathbb{1}$.

- Finally,

$$
\|f\|_{2}^{2}=\sum_{i=1}^{n} f_{i}^{2}=|A| \cdot \frac{|\bar{A}|}{|A|}+|\bar{A}| \cdot \frac{|A|}{|\bar{A}|}=|V|=n .
$$

Thus, we have showed that the Ratio-Cut problem is equivalent to

$$
\begin{aligned}
& \min _{A \subset V} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}, f_{i} \text { defined as above. }
\end{aligned}
$$

## Relaxing RatioCut (cont.)

We have:

$$
\begin{aligned}
& \min _{A \subset V} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}, f_{i} \text { defined as above. }
\end{aligned}
$$

## Relaxing RatioCut (cont.)

We have:

$$
\begin{aligned}
& \min _{A \subset V} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}, f_{i} \text { defined as above. }
\end{aligned}
$$

- This is a discrete optimization problem since the entries of $f$ can only take two values: $\sqrt{|\bar{A}| /|A|}$ and $-\sqrt{|A| /|\bar{A}|}$.


## Relaxing RatioCut (cont.)

We have:

$$
\begin{aligned}
& \min _{A \subset V} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}, f_{i} \text { defined as above. }
\end{aligned}
$$

- This is a discrete optimization problem since the entries of $f$ can only take two values: $\sqrt{|\bar{A}| /|A|}$ and $-\sqrt{|A| /|\bar{A}|}$.
- The problem is NP hard.


## Relaxing RatioCut (cont.)

We have:

$$
\begin{aligned}
& \min _{A \subset V} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}, f_{i} \text { defined as above. }
\end{aligned}
$$

- This is a discrete optimization problem since the entries of $f$ can only take two values: $\sqrt{|\bar{A}| /|A|}$ and $-\sqrt{|A| /|\bar{A}|}$.
- The problem is NP hard.

The natural relaxation of the problem is to remove the discreteness condition on $f$ and solve

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}
\end{aligned}
$$

## Relaxing RatioCut (cont.)

- Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n} .
\end{aligned}
$$

is an eigenvector of $L$ corresponding to the second eigenvalue.

## Relaxing RatioCut (cont.)

- Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}
\end{aligned}
$$

is an eigenvector of $L$ corresponding to the second eigenvalue.

- Clearly, if $\tilde{f}$ is the solution of the problem, then

$$
\tilde{f}^{T} L \tilde{f} \leq \min _{A \subset V} \operatorname{RatioCut}(A, \bar{A})
$$

## Relaxing RatioCut (cont.)

- Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n} .
\end{aligned}
$$

is an eigenvector of $L$ corresponding to the second eigenvalue.

- Clearly, if $\tilde{f}$ is the solution of the problem, then

$$
\tilde{f}^{T} L \tilde{f} \leq \min _{A \subset V} \operatorname{RatioCut}(A, \bar{A})
$$

- How do we get the clusters from $\tilde{f}$ ?
- We could set

$$
\begin{cases}v_{i} \in A & \text { if } f_{i} \geq 0 \\ v_{i} \in \bar{A} & \text { if } f_{i}<0\end{cases}
$$

## Relaxing RatioCut (cont.)

- Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n} .
\end{aligned}
$$

is an eigenvector of $L$ corresponding to the second eigenvalue.

- Clearly, if $\tilde{f}$ is the solution of the problem, then

$$
\tilde{f}^{T} L \tilde{f} \leq \min _{A \subset V} \operatorname{RatioCut}(A, \bar{A})
$$

- How do we get the clusters from $\tilde{f}$ ?
- We could set

$$
\begin{cases}v_{i} \in A & \text { if } f_{i} \geq 0 \\ v_{i} \in \bar{A} & \text { if } f_{i}<0\end{cases}
$$

- More generally, we cluster the coordinates of $f$ using $K$-means.


## Relaxing RatioCut (cont.)

- Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n} .
\end{aligned}
$$

is an eigenvector of $L$ corresponding to the second eigenvalue.

- Clearly, if $\tilde{f}$ is the solution of the problem, then

$$
\tilde{f}^{T} L \tilde{f} \leq \min _{A \subset V} \operatorname{RatioCut}(A, \bar{A})
$$

- How do we get the clusters from $\tilde{f}$ ?
- We could set

$$
\begin{cases}v_{i} \in A & \text { if } f_{i} \geq 0 \\ v_{i} \in \bar{A} & \text { if } f_{i}<0\end{cases}
$$

- More generally, we cluster the coordinates of $f$ using $K$-means.

This is the unnormalized spectral clustering algorithm for $k=2$.

## Relaxing RatioCut (cont.)

- Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}
\end{aligned}
$$

is an eigenvector of $L$ corresponding to the second eigenvalue.

- Clearly, if $\tilde{f}$ is the solution of the problem, then

$$
\tilde{f}^{T} L \tilde{f} \leq \min _{A \subset V} \operatorname{RatioCut}(A, \bar{A})
$$

- How do we get the clusters from $\tilde{f}$ ?
- We could set

$$
\begin{cases}v_{i} \in A & \text { if } f_{i} \geq 0 \\ v_{i} \in \bar{A} & \text { if } f_{i}<0\end{cases}
$$

- More generally, we cluster the coordinates of $f$ using $K$-means.

This is the unnormalized spectral clustering algorithm for

$$
k=2 .
$$

- The above process can be generalized to $k \geq 2$ clusters.


## Unnormalized spectral clustering: summary

## The unnormalized spectral clustering algorithm:

Unnormalized spectral clustering
Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number $k$ of clusters to construct.

- Construct a similarity graph by one of the ways described in Section 2. Let $W$ be its weighted adjacency matrix.
- Compute the unnormalized Laplacian $L$.
- Compute the first $k$ eigenvectors $u_{1}, \ldots, u_{k}$ of $L$.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_{1}, \ldots, u_{k}$ as columns.
- For $i=1, \ldots, n$, let $y_{i} \in \mathbb{R}^{k}$ be the vector corresponding to the $i$-th row of $U$.
- Cluster the points $\left(y_{i}\right)_{i=1, \ldots, n}$ in $\mathbb{R}^{k}$ with the $k$-means algorithm into clusters $C_{1}, \ldots, C_{k}$.
Output: Clusters $A_{1}, \ldots, A_{k}$ with $A_{i}=\left\{j \mid y_{j} \in C_{i}\right\}$.
Source: von Luxburg, 2007.


## Normalized spectral clustering

- Relaxing the RatioCut leads to unnormalized spectral clustering.


## Normalized spectral clustering

- Relaxing the RatioCut leads to unnormalized spectral clustering.
- By relaxing the Ncut problem, we obtain the Normalized spectral clustering algorithm of Shi and Malik (2000).


## Normalized spectral clustering

- Relaxing the RatioCut leads to unnormalized spectral clustering.
- By relaxing the Ncut problem, we obtain the Normalized spectral clustering algorithm of Shi and Malik (2000).

Normalized spectral clustering according to Shi and Malik (2000)
Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number $k$ of clusters to construct.

- Construct a similarity graph by one of the ways described in Section 2. Let $W$ be its weighted adjacency matrix.
- Compute the unnormalized Laplacian $L$.
- Compute the first $k$ generalized eigenvectors $u_{1}, \ldots, u_{k}$ of the generalized eigenproblem $L u=\lambda D u$.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_{1}, \ldots, u_{k}$ as columns.
- For $i=1, \ldots, n$, let $y_{i} \in \mathbb{R}^{k}$ be the vector corresponding to the $i$-th row of $U$.
- Cluster the points $\left(y_{i}\right)_{i=1, \ldots, n}$ in $\mathbb{R}^{k}$ with the $k$-means algorithm into clusters $C_{1}, \ldots, C_{k}$.
Output: Clusters $A_{1}, \ldots, A_{k}$ with $A_{i}=\left\{j \mid y_{j} \in C_{i}\right\}$.

[^0]
## Normalized spectral clustering

- Relaxing the RatioCut leads to unnormalized spectral clustering.
- By relaxing the Ncut problem, we obtain the Normalized spectral clustering algorithm of Shi and Malik (2000).

Normalized spectral clustering according to Shi and Malik (2000)
Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number $k$ of clusters to construct.

- Construct a similarity graph by one of the ways described in Section 2. Let $W$ be its weighted adjacency matrix.
- Compute the unnormalized Laplacian $L$.
- Compute the first $k$ generalized eigenvectors $u_{1}, \ldots, u_{k}$ of the generalized eigenproblem $L u=\lambda D u$.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_{1}, \ldots, u_{k}$ as columns.
- For $i=1, \ldots, n$, let $y_{i} \in \mathbb{R}^{k}$ be the vector corresponding to the $i$-th row of $U$.
- Cluster the points $\left(y_{i}\right)_{i=1, \ldots, n}$ in $\mathbb{R}^{k}$ with the $k$-means algorithm into clusters $C_{1}, \ldots, C_{k}$.
Output: Clusters $A_{1}, \ldots, A_{k}$ with $A_{i}=\left\{j \mid y_{j} \in C_{i}\right\}$.
Source: von Luxburg, 2007.
- Note: The solutions of $L u=\lambda D u$ are the eigenvectors of $L_{\mathrm{rw}}$.

See von Luxburg (2007) for details.

- Another popular variant of the spectral clustering algorithm was provided by Ng, Jordan, and Weiss (2002).
- The algorithm uses $L_{\text {sym }}$ instead of $L$ (unnormalized clustering) or $L_{\mathrm{rw}}$ (Shi and Malik's normalized clustering).


## The normalized clustering algorithm of Ng et al.

- Another popular variant of the spectral clustering algorithm was provided by Ng, Jordan, and Weiss (2002).
- The algorithm uses $L_{\text {sym }}$ instead of $L$ (unnormalized clustering) or $L_{\mathrm{rw}}$ (Shi and Malik's normalized clustering).

Normalized spectral clustering according to Ng , Jordan, and Weiss (2002)
Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number $k$ of clusters to construct.

- Construct a similarity graph by one of the ways described in Section 2. Let $W$ be its weighted adjacency matrix.
- Compute the normalized Laplacian $L_{\text {sym }}$.
- Compute the first $k$ eigenvectors $u_{1}, \ldots, u_{k}$ of $L_{\mathrm{sym}}$.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_{1}, \ldots, u_{k}$ as columns.
- Form the matrix $T \in \mathbb{R}^{n \times k}$ from $U$ by normalizing the rows to norm 1 , that is set $t_{i j}=u_{i j} /\left(\sum_{k} u_{i k}^{2}\right)^{1 / 2}$.
- For $i=1, \ldots, n$, let $y_{i} \in \mathbb{R}^{k}$ be the vector corresponding to the $i$-th row of $T$.
- Cluster the points $\left(y_{i}\right)_{i=1, \ldots, n}$ with the $k$-means algorithm into clusters $C_{1}, \ldots, C_{k}$. Output: Clusters $A_{1}, \ldots, A_{k}$ with $A_{i}=\left\{j \mid y_{j} \in C_{i}\right\}$.

Source: von Luxburg, 2007.
See von Luxburg (2007) for details.


[^0]:    Source: von Luxburg, 2007.

