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Linear Regression: old and new

@ Typical problem: we are given n observations of variables
X1,...,Xpand Y.
e Goal: Use Xi,..., X, to try to predict Y.

@ Example: Cars data compiled using Kelley Blue Book
(n =805,p=11).

Price Mileage Make  [Model ITHm Type Cylinder | Liter Doors Cruse  Sound  Leather
17314.103 8221 Buick Century edan 4D Sedan 6 4 1 4 1
17542.036 9135 Buick Century  Sedan 4D Sedan 6 3.1 4 1 1 0
16218.848 13196 Buick Century  Sedan 4D Sedan 6 31 4 b 1 0
16336.913 16342 Buick Century  Sedan 4D Sedan 6 3.1 4 1 0 0
16339.17 19832 Buick Century  Sedan 4D Sedan 6 3.1 4 1 0 1
15709.053 22236 Buick Century  Sedan 4D Sedan 6 31 4 4 il 0
15230 22576 Buick Century  Sedan 4D Sedan 6 3.1 4 a1l il o
15048.042 22964 Buick Century  Sedan 4D Sedan 6 31 4 3 & 0
14862.094 24021 Buick Century  Sedan 4D Sedan 6 3.1 4 3 0 1
15295.018 27325 Buick Century  Sedan 4D Sedan 6 3.1 4 1 1 1
21335.852 10237 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 0 o
20538.088 15066 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1) 0
20512.094 16633 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1 o
19924.159 19800 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1 1
19774.249 23359 Buick Lacrosse CX Sedarr Sedan 6 3.6 4 1 1 1
19344.166 23765 Buick Lacrosse CX Sedar» Sedan 6 3.6 4 1 il 0
10inE 19 2anno B inl Vnmenecn |V Cncdors Crrdan, B aa 2 T n n
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e Find a linear model Y = 31 X + --- + 3, X,,.
@ In the example, we want:
price = 1 - mileage + (39 - cylinder + . ..
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Linear regression: classical setting

p = nb. of variables,n = nb. of observations.
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Linear regression: classical setting

p = nb. of variables,n = nb. of observations.
Classical setting:

@ n > p (n much larger than p). With enough observations, we
hope to be able to build a good model.
o Note: even if the “true” relationship between the variables is
not linear, we can include transformations of variables.
o Eg.
Xpr1 = X3, Xpyo = X3,

e Note: adding transformed variables can increase p significantly.
@ A complex model requires a lot of observations.
o Trade-off between complexity and interpretability.
Modern setting:
@ In modern problems, it is often the case that n < p.
@ Requires supplementary assumptions (e.g. sparsity).
@ Can still build good models with very few observations.
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Classical setting

Idea:
Y e R X € R™*P
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Classical setting

Idea:
Y e R X e R™*P
U1
o | |
Y = X=1|x1 X2 ... Xp|,
where x1,...,xp € R™*! are the observations of X7,...X),.

o WewantY = 1.Xq +---+ 3,X,.

e Equivalent to solving

A
Ba

5,
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Classical setting (cont.)

We need to solve Y = Xj5.
@ In general, the system has no solution (n > p) or infinitely
many solutions (n < p).
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Classical setting (cont.)

We need to solve Y = Xj5.
@ In general, the system has no solution (n > p) or infinitely
many solutions (n < p).
@ A popular approach is to solve the system in the least squares

sense: .
= argmin||Y — X%
BERP

@ How do we compute the solution?
Calculus approach:

n

0
0= ||Y XB|? = aﬁz Z (yr — Xn1Br — XnaBa — -+ — XipfBy)?
=2 Z (Y — Xr181 — Xiafo — -+ — XipfBp) X (—Xii)
Therefore, k=1
Zin(Xk1ﬂ1 + XpoBo + -+ XipfBp) = Zxkiyk
=1 —
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Calculus approach (cont.)

Now

ZXM(XmBl-FXkQﬂQ—l-- A+ X Bp) = Zsz'yk i=1,...,p,
k=1 k=1

is equivalent to:

XTxp=xTy (Normal equations).
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Calculus approach (cont.)

Now
n n
> Xni(XeaBr+-XnoBat- - +XipBp) = > Xpige  i=1,...,p,
k=1 k=1
is equivalent to:
XTxp=xTy (Normal equations).

o If XTX is invertible, then

B=(XTxX)"'xTy

is the unique minimum of ||Y — X 3||%.
@ Proved by computing the Hessian matrix:

692

Y — XB3|2=2XTX.
6&@” Bl
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Linear algebra approach

Want to solve Y = X 3.
Linear algebra approach: Recall: If V' C R" is a subspace and
w & V, then the best approximation of w be a vector in V is

projy (w).
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Linear algebra approach

Want to solve Y = X 3.
Linear algebra approach: Recall: If V' C R" is a subspace and
w & V, then the best approximation of w be a vector in V is

projy (w).
“Best” in the sense that:

[w —projy(w)|| < flw—vl|  YveV.

|
* proj{w,

o Note:

Xp € col(X) = span(x1,...,Xp).

e If Y & col(X), then the best approximation of Y by a vector in
col(X) is
projcol(X) (Y) :
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Linear algebra approach (cont.)

S0 Y = projen (V) < IV X8| VB R
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Linear algebra approach (cont.)

SO Y — projen (V) < Y — XBIl V8 € RP.
Therefore, to find B we solve
XB = projcol(X) (Y)

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

Y - X/é =Y - projcol(X) (Y) = projcol(X)J- (Y).

Recall
1(X)*t = null(X7).
Thus, ) col(X) mll(X7)
Y — XB = projuuxry(Y) € null(X7T).
That implies:
XT(y - XB) =o.
Equivalently, ( f)

XTxp=xTy (Normal equations).
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The least squares theorem

Theorem (Least squares theorem)
Let A R™™ and b e R™. Then

O Ax = b always has a least squares solution .

@ A vector T is a least squares solution iff it satisfies the normal
equations
AT Az = AT

© I is unique < the columns of A are linearly independent <
AT A is invertible. In that case, the unique least squares
solution is given by

&= (ATA)~1ATh.
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The least squares theorem

Theorem (Least squares theorem)
Let A R™™ and b e R™. Then

O Ax = b always has a least squares solution .

@ A vector T is a least squares solution iff it satisfies the normal
equations
AT Az = AT

© I is unique < the columns of A are linearly independent <
AT A is invertible. In that case, the unique least squares
solution is given by

&= (ATA)~1ATh.

In R:
model <- Im(Y ~ X;+ Xo+ -+ X,,).
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Measuring the fit of a linear model

How good is our linear model?
@ We examine the mean squared error:

1 . 1 — X
MSE(B) = —lly - XB|? = - > (i — i)
k=1
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Measuring the fit of a linear model

How good is our linear model?

@ We examine the mean squared error:
n

. A 1
MSB(B) = —ly = XBIP = = S (5 — 6,
k=1

o Example:
model <- lm(Auto$mpg ~ Auto$horsepower + Auto$weight)

sm <- summary(model)
mean (sm$residuals~2) # The MSE
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The coefficient of determination

o The coefficient of determination, called “R squared” and
denoted R?%:
R2—1_ > i (i — yAz‘)Q.
> i (i —9)?
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The coefficient of determination

o The coefficient of determination, called “R squared” and

denoted R?: . ey
Ezizl(yi—-yd

R*=1- <& X
Zi:l(yi - ?/)2

@ Often used to measure the quality of a linear model.

@ In some sense, the R2 measures “how much better’ is the
prediction, compared to a constant prediction equal to the
average of the y;s.

@ In R: sm$r.squared. (As above, sm <- summary(model)).

@ In a linear model with an intercept, R? equals the square of
the correlation coefficient between the observed Y and the
predicted values Y.

A model with a R? close to 1 fits the data well.
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Measuring the fit of a linear model (cont.)

We can examine the distribution of the residuals:
hist(sm$residuals)

Histogram of sm$residuals

Desirable properties:

[ @ Symmetry
< o Light tail.
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Measuring the fit of a linear model (cont.)

We can examine the distribution of the residuals:
hist(sm$residuals)

Histogram of sm$residuals

Desirable properties:

[ @ Symmetry
< o Light tail.

r T T T 1
-10 5 0 5 10 15

sm$residuals
@ A heavy tail suggests there may be outliers.

e Can use transformations such as log, /-, or 1/ to improve
the fit.
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Measuring the fit of a linear model (cont.)

Plotting the residuals as a function of the mpg (or fitted values),
we immediately observe some patterns.

sméresiduals

Autosmpg

Outliers? Separate categories of cars?
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Improving the model

Add more variables to the model.
Select the best variables to include.
Use transformations.

Separate cars into categories.

etc.
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Improving the model

Add more variables to the model.
Select the best variables to include.
Use transformations.

Separate cars into categories.

@ etc.

For example, let us fit a model only for cars with a mpg less than 25:
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