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Linear Regression: old and new

Typical problem: we are given n observations of variables

X1, . . . , Xp and Y .

Goal: Use X1, . . . , Xp to try to predict Y .

Example: Cars data compiled using Kelley Blue Book

(n = 805, p = 11).

Find a linear model Y = β1X1 + · · ·+ βpXp.

In the example, we want:

price = β1 ·mileage+ β2 · cylinder+ . . .
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Linear regression: classical setting

p = nb. of variables, n = nb. of observations.

Classical setting:

n� p (n much larger than p). With enough observations, we

hope to be able to build a good model.

Note: even if the �true� relationship between the variables is

not linear, we can include transformations of variables.

E.g.

Xp+1 = X2
1 , Xp+2 = X2

2 , . . .

Note: adding transformed variables can increase p signi�cantly.

A complex model requires a lot of observations.

Trade-o� between complexity and interpretability.

Modern setting:

In modern problems, it is often the case that n� p.

Requires supplementary assumptions (e.g. sparsity).

Can still build good models with very few observations.
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Classical setting

Idea:

Y ∈ Rn×1 X ∈ Rn×p

Y =


y1
y2
. . .
yn

 X =

 . . .

x1 x2 . . . xp

. . .

 ,

where x1, . . . ,xp ∈ Rn×1 are the observations of X1, . . . Xp.

We want Y = β1X1 + · · ·+ βpXp.

Equivalent to solving

Y = Xβ β =


β1
β2
...

βp

 .
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Classical setting (cont.)

We need to solve Y = Xβ.

In general, the system has no solution (n� p) or in�nitely
many solutions (n� p).

A popular approach is to solve the system in the least squares

sense:

β̂ = argmin
β∈Rp

‖Y −Xβ‖2.

How do we compute the solution?
Calculus approach:

0 =
∂

∂βi
‖Y −Xβ‖2 =

∂

∂βi

n∑
k=1

(yk −Xk1β1 −Xk2β2 − · · · −Xkpβp)
2

= 2

n∑
k=1

(yk −Xk1β1 −Xk2β2 − · · · −Xkpβp)× (−Xki)

Therefore,
n∑

k=1

Xki(Xk1β1 +Xk2β2 + · · ·+Xkpβp) =

n∑
k=1

Xkiyk
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Calculus approach (cont.)

Now

n∑
k=1

Xki(Xk1β1+Xk2β2+· · ·+Xkpβp) =

n∑
k=1

Xkiyk i = 1, . . . , p,

is equivalent to:

XTXβ = XT y (Normal equations).

If XTX is invertible, then

β̂ = (XTX)−1XTY

is the unique minimum of ‖Y −Xβ‖2.
Proved by computing the Hessian matrix:

∂2

∂βiβj
‖Y −Xβ‖2 = 2XTX.
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Linear algebra approach

Want to solve Y = Xβ.
Linear algebra approach: Recall: If V ⊂ Rn is a subspace and

w 6∈ V , then the best approximation of w be a vector in V is

projV (w).

�Best� in the sense that:

‖w − projV (w)‖ ≤ ‖w − v‖ ∀v ∈ V.

Note:

Xβ ∈ col(X) = span(x1, . . . ,xp).

If Y 6∈ col(X), then the best approximation of Y by a vector in

col(X) is
projcol(X)(Y ).
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Linear algebra approach (cont.)

So ‖Y − projcol(X)(Y )‖ ≤ ‖Y −Xβ‖ ∀β ∈ Rp.

Therefore, to �nd β̂, we solve

Xβ̂ = projcol(X)(Y )

(Note: this system always has a solution.)

With a little more work, we can �nd an explicit solution:

Y −Xβ̂ = Y − projcol(X)(Y ) = projcol(X)⊥(Y ).

Recall

col(X)⊥ = null(XT ).
Thus,

Y −Xβ̂ = projnull(XT )(Y ) ∈ null(XT ).

That implies:

XT (Y −Xβ̂) = 0.
Equivalently,

XTXβ̂ = XTY (Normal equations).
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The least squares theorem

Theorem (Least squares theorem)

Let A ∈ Rn×m and b ∈ Rn. Then

1 Ax = b always has a least squares solution x̂.

2 A vector x̂ is a least squares solution i� it satis�es the normal

equations

ATAx̂ = AT b.

3 x̂ is unique ⇔ the columns of A are linearly independent ⇔
ATA is invertible. In that case, the unique least squares

solution is given by

x̂ = (ATA)−1AT b.

In R:

model <- lm(Y ∼ X1 +X2 + · · ·+Xp).
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Measuring the �t of a linear model

How good is our linear model?

We examine the mean squared error:

MSE(β̂) =
1

n
‖y −Xβ̂‖2 = 1

n

n∑
k=1

(yi − ŷi)2.

Example:

model <- lm(Auto$mpg ~ Auto$horsepower + Auto$weight)

sm <- summary(model)

mean(sm$residuals^2) # The MSE
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The coe�cient of determination

The coe�cient of determination, called �R squared� and

denoted R2:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

.

Often used to measure the quality of a linear model.

In some sense, the R2 measures �how much better� is the

prediction, compared to a constant prediction equal to the

average of the yis.

In R: sm$r.squared. (As above, sm <- summary(model)).

In a linear model with an intercept, R2 equals the square of

the correlation coe�cient between the observed Y and the

predicted values Ŷ .

A model with a R2 close to 1 �ts the data well.
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Measuring the �t of a linear model (cont.)

We can examine the distribution of the residuals:

hist(sm$residuals)

Desirable properties:

Symmetry

Light tail.

A heavy tail suggests there may be outliers.

Can use transformations such as log,
√
·, or 1/x to improve

the �t.
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Measuring the �t of a linear model (cont.)

Plotting the residuals as a function of the mpg (or �tted values),

we immediately observe some patterns.

Outliers? Separate categories of cars?
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Improving the model

Add more variables to the model.

Select the best variables to include.

Use transformations.

Separate cars into categories.

etc.

For example, let us �t a model only for cars with a mpg less than 25:
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