MATH 567: Mathematical Techniques in Data Science Linear Regression: old and new

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 13, 2017

• Typical problem: we are given n observations of variables X_1, \ldots, X_p and Y.

- Typical problem: we are given n observations of variables X_1, \ldots, X_p and Y.
- Goal: Use X_1, \ldots, X_p to try to predict Y.

- Typical problem: we are given n observations of variables X_1, \ldots, X_p and Y.
- Goal: Use X_1, \ldots, X_p to try to predict Y.
- Example: Cars data compiled using Kelley Blue Book

(n = 805, p = 11).

Price	Mileage	Make	Model	Trim	Туре	Cylinder	Liter	Doors	Cruise	Sound	Leather
17314.103	8221	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	1
17542.036	9135	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
16218.848	13196	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
16336.913	16342	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	0
16339.17	19832	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	1
15709.053	22236	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
15230	22576	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
15048.042	22964	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
14862.094	24021	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	1
15295.018	27325	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	1
21335.852	10237	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	0	0
20538.088	15066	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
20512.094	16633	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
19924.159	19800	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	1
19774.249	23359	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	1
19344.166	23765	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
10105 12	24000	Duick	Lacrosso	CV Codort	Codon	6	26		1	0	0

- Typical problem: we are given n observations of variables X_1, \ldots, X_p and Y.
- Goal: Use X_1, \ldots, X_p to try to predict Y.
- Example: Cars data compiled using Kelley Blue Book

(n = 805, p = 11).

Price	Mileage	Make	Model	Trim	Туре	Cylinder	Liter	Doors	Cruise	Sound	Leather
17314.103	8221	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	1
17542.036	9135	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
16218.848	13196	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
16336.913	16342	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	0
16339.17	19832	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	1
15709.053	22236	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
15230	22576	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
15048.042	22964	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
14862.094	24021	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	1
15295.018	27325	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	1
21335.852	10237	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	0	0
20538.088	15066	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
20512.094	16633	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
19924.159	19800	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	1
19774.249	23359	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	1
19344.166	23765	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
10105 12	24000	Duick	Lacrosso	CV Codort	Codon	6	26	A	1	0	0

• Find a linear model $Y = \beta_1 X_1 + \cdots + \beta_p X_p$.

- Typical problem: we are given n observations of variables X_1, \ldots, X_p and Y.
- Goal: Use X_1, \ldots, X_p to try to predict Y.
- Example: Cars data compiled using Kelley Blue Book

(n = 805, p = 11).

Price	Mileage	Make	Model	Trim	Туре	Cylinder	Liter	Doors	Cruise	Sound	Leather
17314.103	8221	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	1
17542.036	9135	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
16218.848	13196	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
16336.913	16342	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	0
16339.17	19832	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	1
15709.053	22236	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
15230	22576	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
15048.042	22964	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	0
14862.094	24021	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	0	1
15295.018	27325	Buick	Century	Sedan 4D	Sedan	6	3.1	4	1	1	1
21335.852	10237	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	0	0
20538.088	15066	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
20512.094	16633	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
19924.159	19800	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	1
19774.249	23359	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	1
19344.166	23765	Buick	Lacrosse	CX Sedar	Sedan	6	3.6	4	1	1	0
10105 12	24000	Duick	Lacrosso	CV Sodart	Codon	6	26	1	1	0	0

- Find a linear model $Y = \beta_1 X_1 + \cdots + \beta_p X_p$.
- In the example, we want: price = $\beta_1 \cdot \text{mileage} + \beta_2 \cdot \text{cylinder} + \dots$

p = nb. of variables, n = nb. of observations.

p = nb. of variables, n = nb. of observations. Classical setting:

• $n \gg p$ (*n* much larger than *p*). With enough observations, we hope to be able to build a good model.

p = nb. of variables, n = nb. of observations.

Classical setting:

- $n \gg p$ (*n* much larger than *p*). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include **transformations** of variables.

p = nb. of variables, n = nb. of observations.

Classical setting:

- $n \gg p$ (*n* much larger than *p*). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include **transformations** of variables.

• E.g.

$$X_{p+1} = X_1^2, X_{p+2} = X_2^2, \dots$$

p = nb. of variables, n = nb. of observations.

Classical setting:

- $n \gg p$ (*n* much larger than *p*). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include **transformations** of variables.

• E.g.

$$X_{p+1} = X_1^2, X_{p+2} = X_2^2, \dots$$

ullet Note: adding transformed variables can increase p significantly.

p = nb. of variables, n = nb. of observations.

Classical setting:

- $n \gg p$ (*n* much larger than *p*). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include **transformations** of variables.

• E.g.

$$X_{p+1} = X_1^2, X_{p+2} = X_2^2, \dots$$

- ullet Note: adding transformed variables can increase p significantly.
- A complex model requires a lot of observations.

p = nb. of variables, n = nb. of observations.

Classical setting:

- $n \gg p$ (*n* much larger than *p*). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include **transformations** of variables.

• E.g.

$$X_{p+1} = X_1^2, X_{p+2} = X_2^2, \dots$$

- ullet Note: adding transformed variables can increase p significantly.
- A complex model requires a lot of observations.
- Trade-off between complexity and interpretability.

p = nb. of variables, n = nb. of observations.

Classical setting:

- $n \gg p$ (*n* much larger than *p*). With enough observations, we hope to be able to build a good model.
- Note: even if the "true" relationship between the variables is not linear, we can include **transformations** of variables.

• E.g.

$$X_{p+1} = X_1^2, X_{p+2} = X_2^2, \dots$$

- ullet Note: adding transformed variables can increase p significantly.
- A complex model requires a lot of observations.
- Trade-off between complexity and interpretability.

Modern setting:

- In modern problems, it is often the case that $n \ll p$.
- Requires supplementary assumptions (e.g. sparsity).
- Can still build good models with very few observations.

Classical setting

Idea:

$$Y \in \mathbb{R}^{n \times 1} \qquad X \in \mathbb{R}^{n \times p}$$

Classical setting

Idea:

$$Y \in \mathbb{R}^{n \times 1} \qquad X \in \mathbb{R}^{n \times p}$$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} \qquad X = \begin{pmatrix} | & | & \dots & | \\ \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_p} \\ | & | & \dots & | \end{pmatrix},$$

where $\mathbf{x_1}, \ldots, \mathbf{x_p} \in \mathbb{R}^{n \times 1}$ are the observations of X_1, \ldots, X_p .

Classical setting

Idea:

$$Y \in \mathbb{R}^{n \times 1} \qquad X \in \mathbb{R}^{n \times p}$$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} \qquad X = \begin{pmatrix} | & | & \dots & | \\ \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_p} \\ | & | & \dots & | \end{pmatrix},$$

where $\mathbf{x_1}, \ldots, \mathbf{x_p} \in \mathbb{R}^{n \times 1}$ are the observations of X_1, \ldots, X_p .

- We want $Y = \beta_1 X_1 + \dots + \beta_p X_p$.
- Equivalent to solving

$$Y = X\beta \qquad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}.$$

We need to solve $Y = X\beta$.

• In general, the system has no solution $(n \gg p)$ or infinitely many solutions $(n \ll p)$.

We need to solve $Y = X\beta$.

- In general, the system has no solution $(n \gg p)$ or infinitely many solutions $(n \ll p)$.
- A popular approach is to solve the system in the least squares sense:

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|Y - X\beta\|^2.$$

We need to solve $Y = X\beta$.

- In general, the system has no solution (n ≫ p) or infinitely many solutions (n ≪ p).
- A popular approach is to solve the system in the least squares sense:

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|Y - X\beta\|^2.$$

• How do we compute the solution? Calculus approach:

We need to solve $Y = X\beta$.

- In general, the system has no solution (n ≫ p) or infinitely many solutions (n ≪ p).
- A popular approach is to solve the system in the least squares sense:

$$\hat{\beta} = \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \|Y - X\beta\|^2.$$

• How do we compute the solution? Calculus approach:

$$0 = \frac{\partial}{\partial \beta_i} \|Y - X\beta\|^2 = \frac{\partial}{\partial \beta_i} \sum_{k=1}^n \left(y_k - X_{k1}\beta_1 - X_{k2}\beta_2 - \dots - X_{kp}\beta_p\right)^2$$
$$= 2\sum_{k=1}^n \left(y_k - X_{k1}\beta_1 - X_{k2}\beta_2 - \dots - X_{kp}\beta_p\right) \times (-X_{ki})$$

We need to solve $Y = X\beta$.

- In general, the system has no solution $(n \gg p)$ or infinitely many solutions $(n \ll p)$.
- A popular approach is to solve the system in the least squares sense:

$$\hat{\beta} = \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \|Y - X\beta\|^2.$$

• How do we compute the solution? Calculus approach:

$$0 = \frac{\partial}{\partial \beta_i} \|Y - X\beta\|^2 = \frac{\partial}{\partial \beta_i} \sum_{k=1}^n (y_k - X_{k1}\beta_1 - X_{k2}\beta_2 - \dots - X_{kp}\beta_p)^2$$
$$= 2\sum_{k=1}^n (y_k - X_{k1}\beta_1 - X_{k2}\beta_2 - \dots - X_{kp}\beta_p) \times (-X_{ki})$$
Therefore,

$$\sum_{k=1}^{n} X_{ki} (X_{k1}\beta_1 + X_{k2}\beta_2 + \dots + X_{kp}\beta_p) = \sum_{k=1}^{n} X_{ki} y_k$$

Calculus approach (cont.)

Now

$$\sum_{k=1}^{n} X_{ki} (X_{k1}\beta_1 + X_{k2}\beta_2 + \dots + X_{kp}\beta_p) = \sum_{k=1}^{n} X_{ki}y_k \qquad i = 1, \dots, p,$$

is equivalent to:

$$X^T X \beta = X^T y$$
 (Normal equations).

Calculus approach (cont.)

Now

$$\sum_{k=1}^{n} X_{ki}(X_{k1}\beta_1 + X_{k2}\beta_2 + \dots + X_{kp}\beta_p) = \sum_{k=1}^{n} X_{ki}y_k \qquad i = 1, \dots, p,$$

is equivalent to:

$$X^T X \beta = X^T y$$
 (Normal equations).

• If $X^T X$ is invertible, then

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

is the unique minimum of $\|Y - X\beta\|^2$.

Calculus approach (cont.)

Now

$$\sum_{k=1}^{n} X_{ki}(X_{k1}\beta_1 + X_{k2}\beta_2 + \dots + X_{kp}\beta_p) = \sum_{k=1}^{n} X_{ki}y_k \qquad i = 1, \dots, p,$$

is equivalent to:

$$X^T X \beta = X^T y$$
 (Normal equations).

• If $X^T X$ is invertible, then

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

is the unique minimum of $\|Y - X\beta\|^2$.

• Proved by computing the Hessian matrix:

$$\frac{\partial^2}{\partial \beta_i \beta_j} \|Y - X\beta\|^2 = 2X^T X.$$

Linear algebra approach

Want to solve $Y = X\beta$.

Linear algebra approach: Recall: If $V \subset \mathbb{R}^n$ is a subspace and $w \notin V$, then the best approximation of w be a vector in V is

 $\operatorname{proj}_V(w).$

Linear algebra approach

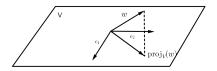
Want to solve $Y = X\beta$.

Linear algebra approach: Recall: If $V \subset \mathbb{R}^n$ is a subspace and $w \notin V$, then the best approximation of w be a vector in V is

 $\operatorname{proj}_V(w).$

"Best" in the sense that:

 $||w - \operatorname{proj}_V(w)|| \le ||w - v|| \quad \forall v \in V.$



Linear algebra approach

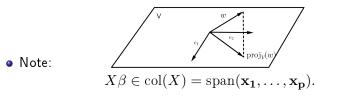
Want to solve $Y = X\beta$.

Linear algebra approach: Recall: If $V \subset \mathbb{R}^n$ is a subspace and $w \notin V$, then the best approximation of w be a vector in V is

 $\operatorname{proj}_V(w).$

"Best" in the sense that:

 $||w - \operatorname{proj}_V(w)|| \le ||w - v|| \quad \forall v \in V.$



• If $Y \not\in \operatorname{col}(X)$, then the best approximation of Y by a vector in $\operatorname{col}(X)$ is

 $\operatorname{proj}_{\operatorname{col}(X)}(Y).$

So $||Y - \operatorname{proj}_{\operatorname{col}(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p.$

So

$$||Y - \operatorname{proj}_{\operatorname{col}(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p$$

Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{\operatorname{col}(X)}(Y)$$

(Note: this system always has a solution.)

So

$$||Y - \operatorname{proj}_{\operatorname{col}(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p.$$

Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{\operatorname{col}(X)}(Y)$$

(Note: this system always has a solution.) With a little more work, we can find an explicit solution:

$$Y - X\hat{\beta} = Y - \operatorname{proj}_{\operatorname{col}(X)}(Y) = \operatorname{proj}_{\operatorname{col}(X)^{\perp}}(Y).$$

So

$$||Y - \operatorname{proj}_{\operatorname{col}(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p.$$

Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{\operatorname{col}(X)}(Y)$$

(Note: this system always has a solution.) With a little more work, we can find an explicit solution:

$$Y - X\hat{\beta} = Y - \operatorname{proj}_{\operatorname{col}(X)}(Y) = \operatorname{proj}_{\operatorname{col}(X)^{\perp}}(Y).$$

Recall

$$\operatorname{col}(X)^{\perp} = \operatorname{null}(X^T).$$

So

$$||Y - \operatorname{proj}_{\operatorname{col}(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p.$$

Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{\operatorname{col}(X)}(Y)$$

(Note: this system always has a solution.) With a little more work, we can find an explicit solution:

$$Y - X\hat{\beta} = Y - \operatorname{proj}_{\operatorname{col}(X)}(Y) = \operatorname{proj}_{\operatorname{col}(X)^{\perp}}(Y).$$

Recall

$$\operatorname{col}(X)^{\perp} = \operatorname{null}(X^T).$$

Thus,

$$Y - X\hat{\beta} = \operatorname{proj}_{\operatorname{null}(X^T)}(Y) \in \operatorname{null}(X^T).$$

So

$$||Y - \operatorname{proj}_{\operatorname{col}(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p.$$

Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{\operatorname{col}(X)}(Y)$$

(Note: this system always has a solution.) With a little more work, we can find an explicit solution:

$$Y - X\hat{\beta} = Y - \operatorname{proj}_{\operatorname{col}(X)}(Y) = \operatorname{proj}_{\operatorname{col}(X)^{\perp}}(Y).$$

Recall

$$\operatorname{col}(X)^{\perp} = \operatorname{null}(X^T).$$

Thus,

$$Y - X\hat{\beta} = \operatorname{proj}_{\operatorname{null}(X^T)}(Y) \in \operatorname{null}(X^T).$$

That implies:

$$X^T(Y - X\hat{\beta}) = 0.$$

So

$$||Y - \operatorname{proj}_{\operatorname{col}(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p.$$

Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{\operatorname{col}(X)}(Y)$$

(Note: this system always has a solution.) With a little more work, we can find an explicit solution:

$$Y - X\hat{\beta} = Y - \operatorname{proj}_{\operatorname{col}(X)}(Y) = \operatorname{proj}_{\operatorname{col}(X)^{\perp}}(Y).$$

Recall

$$\operatorname{col}(X)^{\perp} = \operatorname{null}(X^T).$$

Thus,

$$Y - X\hat{\beta} = \operatorname{proj}_{\operatorname{null}(X^T)}(Y) \in \operatorname{null}(X^T).$$

That implies:

$$X^T(Y - X\hat{\beta}) = 0.$$

Equivalently,

$$X^T X \hat{\beta} = X^T Y$$
 (Normal equations).

Theorem (Least squares theorem)

Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. Then

- Ax = b always has a least squares solution \hat{x} .
- **2** A vector \hat{x} is a least squares solution iff it satisfies the normal equations

$$A^T A \hat{x} = A^T b.$$

\$\hat{x}\$ is unique \$\⇔\$ the columns of A are linearly independent \$\⇔\$ A^TA is invertible. In that case, the unique least squares solution is given by

$$\hat{x} = (A^T A)^{-1} A^T b.$$

Theorem (Least squares theorem)

Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. Then

- Ax = b always has a least squares solution \hat{x} .
- **2** A vector \hat{x} is a least squares solution iff it satisfies the normal equations

$$A^T A \hat{x} = A^T b.$$

\$\hat{x}\$ is unique \$\⇔\$ the columns of A are linearly independent \$\⇔\$ A^TA is invertible. In that case, the unique least squares solution is given by

$$\hat{x} = (A^T A)^{-1} A^T b.$$

In R:

$$model <- lm(Y \sim X_1 + X_2 + \dots + X_p).$$

Measuring the fit of a linear model

How good is our linear model?

• We examine the *mean squared error*:

$$MSE(\hat{\beta}) = \frac{1}{n} \|y - X\hat{\beta}\|^2 = \frac{1}{n} \sum_{k=1}^n (y_i - \hat{y}_i)^2.$$

Measuring the fit of a linear model

How good is our linear model?

• We examine the *mean squared error*:

$$MSE(\hat{\beta}) = \frac{1}{n} \|y - X\hat{\beta}\|^2 = \frac{1}{n} \sum_{k=1}^n (y_i - \hat{y}_i)^2.$$

• Example:

model <- lm(Auto\$mpg ~ Auto\$horsepower + Auto\$weight)
sm <- summary(model)
mean(sm\$residuals^2) # The MSE</pre>

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}.$$

• The coefficient of determination, called "R squared" and denoted R^2 :

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}.$$

• Often used to measure the quality of a linear model.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}.$$

- Often used to measure the quality of a linear model.
- In some sense, the R^2 measures "how much better" is the prediction, compared to a constant prediction equal to the average of the y_is .

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}.$$

- Often used to measure the quality of a linear model.
- In some sense, the R^2 measures "how much better" is the prediction, compared to a constant prediction equal to the average of the y_is .
- In R: sm\$r.squared. (As above, sm <- summary(model)).

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}.$$

- Often used to measure the quality of a linear model.
- In some sense, the R^2 measures "how much better" is the prediction, compared to a constant prediction equal to the average of the y_is .
- In R: sm\$r.squared. (As above, sm <- summary(model)).
- In a linear model with an intercept, R² equals the square of the correlation coefficient between the observed Y and the predicted values Ŷ.

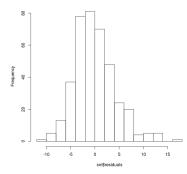
$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}.$$

- Often used to measure the quality of a linear model.
- In some sense, the R^2 measures "how much better" is the prediction, compared to a constant prediction equal to the average of the y_is .
- In R: sm\$r.squared. (As above, sm <- summary(model)).
- In a linear model with an intercept, R² equals the square of the correlation coefficient between the observed Y and the predicted values Ŷ.
- A model with a R^2 close to 1 fits the data well.

Measuring the fit of a linear model (cont.)

We can examine the distribution of the residuals: hist(sm\$residuals)

Histogram of sm\$residuals



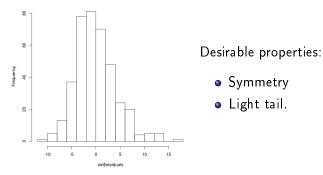
Desirable properties:

- Symmetry
- Light tail.

Measuring the fit of a linear model (cont.)

We can examine the distribution of the residuals: hist(sm\$residuals)

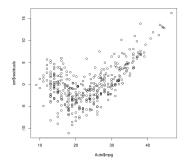
Histogram of sm\$residuals



- A heavy tail suggests there may be outliers.
- \bullet Can use transformations such as $\log, \sqrt{\cdot},$ or 1/x to improve the fit.

Measuring the fit of a linear model (cont.)

Plotting the residuals as a function of the mpg (or fitted values), we immediately observe some patterns.



Outliers? Separate categories of cars?

Improving the model

- Add more variables to the model.
- Select the best variables to include.
- Use transformations.
- Separate cars into categories.
- etc.

Improving the model

- Add more variables to the model.
- Select the best variables to include.
- Use transformations.
- Separate cars into categories.
- etc.

For example, let us fit a model only for cars with a mpg less than 25:

