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Predicting categorical variables

So far, we developed methods for modelling quantitative or
continuous outputs.

We will now discuss techniques to model categorical or
discrete outputs.

Examples of problems:
1 You receive an email. Is it spam or not? (binary response).
2 Web browsing analysis: link clicked or not clicked?
3 Handwritten digits recognition (Y ∈ {0, . . . , 9}).

ESL, Figure 1.2.

We begin with two very simple approaches: linear regression
and nearest neighbors.
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Linear regression

Example:

We are given X ∈ Rn×2 and Y ∈ {0, 1}n.
Think of yi as xi's label (red/blue say).

x y
(0.1,0.4) 1

(0.5,0.8) 0

(0.6, 0.2) 1
...

...

We want to predict the category of new points.
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Linear regression (cont.)

First approach: use linear regression as if the output was
continuous.

Fit Y = Xβ + ε (linear decision boundary).

Given x = (x1, x2)
T , use xTβ to predict the label.

Output is in {0, 1}, but xTβ ∈ R.
Use

ŷ =

{
0 if xTβ < 0.5

1 if xTβ ≥ 0.5
.

Remarks:

1 Linear regression is not always appropriate for categorical data.

2 For example, coding (e.g. 1, 2, 3, . . . ) often implies an ordering.
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Linear regression (cont.)

Example with simulated data (exercise):
eps = 0.2
ydata1 = runif(100, 0,1 + eps)
ind1 = matrix(0, nrow=100,ncol=1)
ydata2 = runif(100,1-eps, 2)
ind2 = matrix(1, nrow=100,ncol=1)

ydata = c(ydata1,ydata2)
xdata = runif(200,0,1)
ind = c(ind1, ind2)

data = data.frame(x = xdata, y = ydata, cat = ind)

plot(data$x, data$y, col=c("red", "blue")[data$cat+1])
model = lm(cat ~ x + y, data=data)
coef = model$coefficients
abline((0.5-coef[1])/coef[3], -1*coef[2]/coef[3], lwd=2)

(a) eps = -0.2 (b) eps = 0.2 5/10



Test error

As usual, we split our data into train and test sets.

Compute classi�cation error on test set.

library(caTools)

sample = sample.split(data$x, SplitRatio = .75)
train = subset(data, sample == TRUE)
test = subset(data, sample == FALSE)

model = lm(cat ~ x + y, data=train)
yhat = as.numeric(predict(model, test) > 0.5)
error = test$cat != yhat
error_rate = sum(error)/length(error)*100

Exercise: Compute the test er-
ror as a function of eps in the
previous example, for multiple
train/test sets.

Note: we can also use a more general loss function (L(i, j))ki,j=1.
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Nearest neighbors

Nearest neighbors: use closest observations in the training set to
make predictions.

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi.

Here Nk(x) denotes the k-nearest neighbors of x (w.r.t. some
metric, e.g. Euclidean distance).

Use a �majority vote� to determine �nal labels

Ĝ(x) =

{
0 if Ŷ (x) < 0.5

1 if Ŷ (x) ≥ 0.5
.

ESL, Fig. 2.2: 15 Nearest Neighbor classi�er
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Nearest neighbors

Reducing the number of neighbors leads to:

A smaller training error (training error is 0 when using k = 1
neighbor).
Can use cross-validation to choose k.
Although a small k leads to a small training error, the model
may not generalize well (large test error).

ESL, Fig. 2.3, 1 Nearest classi�er
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Example

Note: Variables should usually be scaled before using k-NN.
train.X = scale(train[,c("x","y")])
train.Y = train$cat
test.X = scale(test[,c("x","y")])

knn_pred = knn(train.X, test.X, train.Y, k=1)
error = test$cat != knn_pred
error_rate_knn = sum(error)/length(error)*100

error_knn = rep(0,10)
for(i in 1:10){
knn_pred = knn(train.X, test.X, train.Y, k=i)
error = test$cat != knn_pred
error_knn[i] = sum(error)/length(error)*100

}
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Linear regression vs Nearest neighbors

A bias-variance tradeo�:
Linear regression:

Relies on the assumption that the decision boundary is linear.

Decision boundary is smooth.

High bias, low variance.

Nearest neighbors:

Adaptive, less assumptions on the data.

A particular decision may depend only on a handful of points.
Less robust.

More wiggly and unstable.

Low bias, high variance.

Each method has its own situations for which it works best
Both methods can lead to very good predictions.
Many strategies exist to improve these methods (as we will see
later).
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