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Separating sets: mapping the features

We saw in the previous lecture how support vector machines

provide a robust way of �nding a separating hyperplane:

What if the data is not separable? Can map into a

high-dimensional space.
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A brief intro to duality in optimization

Consider the problem:

min
x∈D⊂Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

Denote by p? the optimal value of the problem.

Lagrangian: L : D × Rm × Rp → R

L(x, λ, ν) := f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x).

Lagrange dual function: g : Rm × Rp → R

g(λ, ν) := inf
x∈D

L(x, λ, ν).

Claim: for every λ ≥ 0,

g(λ, ν) ≤ p?.
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A brief intro to duality in optimization

Dual problem:

max
λ∈Rm, ν∈Rp

g(λ, ν)

subject to λ ≥ 0.

Denote by d? the optimal value of the dual problem. Clearly

d? ≤ p? (weak duality).

Strong duality: d? = p?.

Does not hold in general.

Usually holds for convex problems.

(See e.g. Slater's constraint quali�cation).
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The kernel trick

Recall that SVM solves:

min
β0,β,ξ

1

2
‖β‖2 + C

n∑
i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi

ξi ≥ 0.

The associated Lagrangian is

LP =
1

2
‖β‖2+C

n∑
i=1

ξi−
n∑
i=1

αi[yi(x
T
i β+β0)− (1− ξi)]−

n∑
i=1

µiξi,

which we minimize w.r.t. β, β0, ξ. Setting the respective

derivatives to 0, we obtain:

β =
n∑
i=1

αiyixi, 0 =
n∑
i=1

αiyi, αi = C − µi (i = 1, . . . , n).
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The kernel trick (cont.)

Substituting into LP , we obtain the Lagrange (dual) objective

function:

LD =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj .

The function LD provides a lower bound on the original objective

function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by

maximizing LD under the previous constraints (strong duality).

Now suppose h : Rp → Rm, transforming our features to

h(xi) = (h1(xi), . . . , hm(xi)) ∈ Rm.

The Lagrange dual function becomes:

LD =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjh(xi)
Th(xj).

Important observation: LD only depends on 〈h(xi), h(xj)〉.
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Positive de�nite kernels

Important observation: LD only depends on 〈h(xi), h(xj)〉.

In fact, we don't even need to specify h, we only need:

K(x, x′) = 〈h(x), h(x′)〉.

Question: Given K : Rp × Rp → R, when can we guarantee that

K(x, x′) = 〈h(x), h(x′)〉
for some function h?

The previous question can be answered using the notion of positive

de�nite function in functional analysis.
Observation: Suppose K has the desired form. Then, for
x1, . . . , xN ∈ Rp, and vi := h(xi),

(K(xi, xj)) = (〈h(xi), h(xj)〉)
= (〈vi, vj〉)
= V TV, where V = (vT1 , . . . , v

T
N ).

Conclusion: the matrix (K(xi, xj)) is positive semide�nite.
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Positive de�nite kernels (cont.)

Necessary condition to have K(x, x′) = 〈h(x), h(x′)〉:

(K(xi, xj))
N
i,j=1 is psd

for any x1, . . . , xN , and any N ≥ 1.

Note also that K(x, x′) = K(x′, x) if K(x, x′) = 〈h(x), h(x′)〉.

De�nition: Let X be a set. A symmetric kernel K : X × X → R
is said to be a positive (semi)de�nite kernel if

(K(xi, xj))
N
i,j=1 is positive (semi)de�nite

for all x1, . . . , xN ∈ X and all N ≥ 1.

One can show that positive de�nite kernels can be written

K(x, x′) = 〈h(x), h(x′)〉 for some function h de�ned on an

appropriate space.
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Back to SVM

We can replace h by any positive de�nite kernel in the SVM

problem:

LD =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjh(xi)
Th(xj)

=

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi,xj).

Three popular choice in the SVM literature:

K(x, x′) = e−γ‖x−x
′‖22 (Gaussian kernel)

K(x, x′) = (1 + 〈x, x′〉)d (d-th degree polynomial)

K(x, x′) = tanh(κ1〈x, x′〉+ κ2) (Neural networks).
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Example: decision function

ESL, Figure 12.3 (solid black line = decision boundary, dotted line = margin).
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