MATH 567: Mathematical Techniques in Data Science Support vector machines and kernels

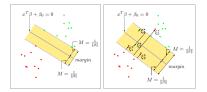
Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 20, 2017

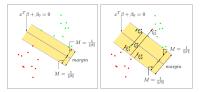
Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:

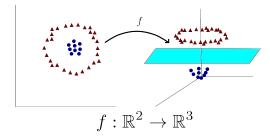


Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:



What if the data is not separable? Can map into a high-dimensional space.



Consider the problem:

$$\min_{\substack{x \in \mathcal{D} \subset \mathbb{R}^n \\ \text{subject to}}} f_0(x)$$

$$f_i(x) \le 0, \qquad i = 1, \dots, m$$

$$h_i(x) = 0, \qquad i = 1, \dots, p.$$

Denote by p^{\star} the optimal value of the problem.

Consider the problem:

$$\min_{\substack{x \in \mathcal{D} \subset \mathbb{R}^n \\ \text{subject to}}} f_0(x)$$
subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p.$

Denote by p^* the optimal value of the problem. Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x).$$

Consider the problem:

$$\min_{\substack{x \in \mathcal{D} \subset \mathbb{R}^n \\ \text{subject to}}} f_0(x)$$
subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p.$

Denote by p^* the optimal value of the problem. Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x,\lambda,\nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x).$$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) := \inf_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

Consider the problem:

$$\min_{\substack{x \in \mathcal{D} \subset \mathbb{R}^n}} \quad f_0(x)$$
subject to $f_i(x) \le 0, \qquad i = 1, \dots, m$
 $h_i(x) = 0, \qquad i = 1, \dots, p.$

Denote by p^* the optimal value of the problem. Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x).$$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) := \inf_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

Claim: for every $\lambda \ge 0$,

$$g(\lambda,\nu) \le p^{\star}$$

Dual problem:

 $\max_{\lambda \in \mathbb{R}^m, \ \nu \in \mathbb{R}^p} g(\lambda, \nu)$ subject to $\lambda \ge 0$.

Dual problem:

 $\max_{\lambda \in \mathbb{R}^m, \ \nu \in \mathbb{R}^p} g(\lambda, \nu)$ subject to $\lambda \ge 0.$

Denote by d^{\star} the optimal value of the dual problem. Clearly

 $d^{\star} \leq p^{\star}$ (weak duality).

Dual problem:

$$\max_{\lambda \in \mathbb{R}^m, \ \nu \in \mathbb{R}^p} g(\lambda, \nu)$$

subject to $\lambda \ge 0$.

Denote by d^{\star} the optimal value of the dual problem. Clearly

$$d^{\star} \leq p^{\star}$$
 (weak duality).

Strong duality: $d^{\star} = p^{\star}$.

- Does not hold in general.
- Usually holds for convex problems.
- (See e.g. Slater's constraint qualification).

The kernel trick

Recall that SVM solves:

$$\min_{\beta_0,\beta,\xi} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$
 $\xi_i \ge 0.$

The kernel trick

Recall that SVM solves:

$$\min_{\substack{\beta_0,\beta,\xi}} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$
 $\xi_i \ge 0.$

The associated Lagrangian is

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i [y_i (x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^n \mu_i \xi_i,$$

which we minimize w.r.t. β, β_0, ξ .

The kernel trick

Recall that SVM solves:

$$\min_{\substack{\beta_0,\beta,\xi}} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$
 $\xi_i \ge 0.$

The associated Lagrangian is

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i [y_i (x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^n \mu_i \xi_i,$$

which we minimize w.r.t. β, β_0, ξ . Setting the respective derivatives to 0, we obtain:

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i, \quad 0 = \sum_{i=1}^{n} \alpha_i y_i, \quad \alpha_i = C - \mu_i \quad (i = 1, \dots, n).$$

Substituting into L_{P} , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

Substituting into L_{P} , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

Substituting into L_{P} , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality).

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality). Now suppose $h : \mathbb{R}^p \to \mathbb{R}^m$, transforming our features to

$$h(x_i) = (h_1(x_i), \dots, h_m(x_i)) \in \mathbb{R}^m.$$

Substituting into L_{P} , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality). Now suppose $h : \mathbb{R}^p \to \mathbb{R}^m$, transforming our features to

$$h(x_i) = (h_1(x_i), \dots, h_m(x_i)) \in \mathbb{R}^m.$$

The Lagrange dual function becomes:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j}).$$

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_D provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality). Now suppose $h : \mathbb{R}^p \to \mathbb{R}^m$, transforming our features to

$$h(x_i) = (h_1(x_i), \dots, h_m(x_i)) \in \mathbb{R}^m.$$

The Lagrange dual function becomes:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j}).$$

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$.

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$. In fact, we don't even need to specify h, we only need:

 $K(x,x') = \langle h(x), h(x') \rangle.$

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$. In fact, we don't even need to specify h, we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Question: Given $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that $K(x,x') = \langle h(x), h(x') \rangle$

for some function h?

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$. In fact, we don't even need to specify h_i , we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Question: Given $K : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that

$$K(x, x') = \langle h(x), h(x') \rangle$$

for some function h?

The previous question can be answered using the notion of *positive definite function* in functional analysis.

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$. In fact, we don't even need to specify h_i , we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Question: Given $K : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that

$$K(x, x') = \langle h(x), h(x') \rangle$$

for some function h?

The previous question can be answered using the notion of *positive* definite function in functional analysis. **Observation:** Suppose K has the desired form. Then, for $x_1, \ldots, x_N \in \mathbb{R}^p$, and $v_i := h(x_i)$,

$$\begin{aligned} (K(x_i, x_j)) &= (\langle h(x_i), h(x_j) \rangle) \\ &= (\langle v_i, v_j \rangle) \\ &= V^T V, \quad \text{where } V = (v_1^T, \dots, v_N^T) \end{aligned}$$

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$. In fact, we don't even need to specify h_i , we only need:

$$K(x, x') = \langle h(x), h(x') \rangle.$$

Question: Given $K : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, when can we guarantee that

$$K(x, x') = \langle h(x), h(x') \rangle$$

for some function h?

The previous question can be answered using the notion of *positive* definite function in functional analysis. **Observation:** Suppose K has the desired form. Then, for $x_1, \ldots, x_N \in \mathbb{R}^p$, and $v_i := h(x_i)$, $(K(x_i, x_j)) = (\langle h(x_i), h(x_j) \rangle)$ $= (\langle v_i, v_j \rangle)$

$$= V^T V,$$
 where $V = (v_1^T, \dots, v_N^T).$

Conclusion: the matrix $(K(x_i, x_j))$ is positive semidefinite.

• Necessary condition to have $K(x,x') = \langle h(x), h(x') \rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \ge 1$.

• Necessary condition to have $K(x,x') = \langle h(x), h(x') \rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \ge 1$. • Note also that K(x, x') = K(x', x) if $K(x, x') = \langle h(x), h(x') \rangle$. • Necessary condition to have $K(x,x') = \langle h(x), h(x') \rangle$:

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \ge 1$. • Note also that K(x, x') = K(x', x) if $K(x, x') = \langle h(x), h(x') \rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be a *positive (semi)definite kernel* if

 $(K(x_i, x_j))_{i,j=1}^N$ is positive (semi)definite

for all $x_1, \ldots, x_N \in \mathcal{X}$ and all $N \ge 1$.

 \bullet Necessary condition to have $K(x,x')=\langle h(x),h(x')\rangle {:}$

$$(K(x_i, x_j))_{i,j=1}^N$$
 is psd

for any x_1, \ldots, x_N , and any $N \ge 1$. • Note also that K(x, x') = K(x', x) if $K(x, x') = \langle h(x), h(x') \rangle$.

Definition: Let \mathcal{X} be a set. A symmetric kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is said to be a *positive (semi)definite kernel* if

 $(K(x_i, x_j))_{i,j=1}^N$ is positive (semi)definite

for all $x_1, \ldots, x_N \in \mathcal{X}$ and all $N \ge 1$.

• One can show that positive definite kernels can be written $K(x,x') = \langle h(x), h(x') \rangle$ for some function h defined on an appropriate space.

Back to SVM

We can replace h by any positive definite kernel in the SVM problem:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j})$$
$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x_i}, \mathbf{x_j}).$$

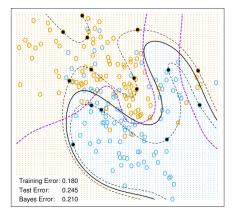
We can replace h by any positive definite kernel in the SVM problem:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathbf{T}} \mathbf{h}(\mathbf{x_j})$$
$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x_i}, \mathbf{x_j}).$$

Three popular choice in the SVM literature:

$$\begin{split} K(x, x') &= e^{-\gamma \|x - x'\|_2^2} \quad \text{(Gaussian kernel)} \\ K(x, x') &= (1 + \langle x, x' \rangle)^d \quad \text{(d-th degree polynomial)} \\ K(x, x') &= \tanh(\kappa_1 \langle x, x' \rangle + \kappa_2) \quad \text{(Neural networks).} \end{split}$$

Example: decision function



SVM - Degree-4 Polynomial in Feature Space

ESL, Figure 12.3 (solid black line = decision boundary, dotted line = margin).