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@ High-dimensional data often has a low-rank structure.
@ Most of the “action” may occur in a subspace of RP.
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@ High-dimensional data often has a low-rank structure.
@ Most of the “action” may occur in a subspace of RP.

Problem: How can we discover low dimensional structures in data?

@ Principal components analysis: construct projections of the data
that capture most of the variability in the data.

@ Provides a low-rank approximation to the data.

@ Can lead to a significant dimensionality reduction.
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observations of a random vector (Xj,...,X,) € RP.
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Principal component analysis (PCA)

o Let X € R™*P with rows z1,...,z, € RP. We think of X as n
observations of a random vector (Xj,...,X,) € RP.

@ Suppose each column has mean 0, i.e., Y ;" | i = O1xp.

o We want to find a linear combination w1 X; + - - - + w, X, with
maximum variance. (Intuition: we look for a direction in RP where
the data varies the most.)

We solve:
w = argmax Z(w?wﬁ
lwll2=1 ;5
(Note: S, (zFw)? is proportional to the sample variance of the
data since we assume each column of X has mean 0.)
Equivalently, we solve:
w = argmax(Xw)? (Xw) = argmax w? X7 Xw
[[w]l2=1 [wl||2=1

Claim: w is an eigenvector associated to the largest eigenvalue of
XTX.
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Proof of claim: Rayleigh quotients

Let A € RP*P be a symmetric (or Hermitian) matrix. The Rayleigh
quotient is defined by
2T Ar  (Az, )

R(A,z) = Ty o) (x € RP,x # 0px1).
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Proof of claim: Rayleigh quotients

Let A € RP*P be a symmetric (or Hermitian) matrix. The Rayleigh
quotient is defined by
2T Ar  (Az, )

R(A,z) = Ty o) (x € RP,x # 0px1).

Observations:
Q If Az = Az with ||z||2 = 1, then R(A,x) = A. Thus,

SUp R(A,2) > Amax(A).
x#0

@ Let {\1,...,)\,} denote the eigenvalues of A, and let
{vi,...,vp} C RP be an orthonormal basis of eigenvectors of
P02
A Wz =37 00 then R(A,z) = %
It follows that sup R(A, ) < A (A).
z#0
Thus, sup, .o R(A, z) = sup| ;=1 2T Az = Apax(A).
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Back to PCA

Previous argument shows that

n
wM) = argmax g (zFw)? = argmaxw? XT Xw
[wll2=1 =7 flwll2=1

is an eigenvector associated to the largest eigenvalue of X7 X.
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Back to PCA

Previous argument shows that

n
wM) = argmax g (zFw)? = argmaxw? XT Xw
[wll2=1 5= flwll2=1

is an eigenvector associated to the largest eigenvalue of X7 X.
First principal component:
@ The linear combination Y %_; wgl)XZ- is the first principal
component of (X1,...,X,).
o Alternatively, we say that Xw(!) is the first (sample) principal
component of X.
@ It is the linear combination of the columns of X having the “most
variance”.
Second principal component: We look for a new linear
combination of the X;'s that

@ Is orthogonal to the first principal component, and

@ Maximizes the variance.
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Back to PCA (cont.)

In other words:

2)

w! (T

= argmax g zlw)? = argmax w? X7 Xw.
[wll2=1 5= flwll2=1
wlw wLw®
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Back to PCA (cont.)

In other words:

n
w® = argmax E (T w)? = argmaxw’ X7 Xw.
lwlla=1 5= llwll2=1
wlw wlLw®

@ Using a similar argument as before with Rayleigh quotients, we
conclude that w? is an eigenvector associated to the second
largest eigenvalue of X7 X.
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Back to PCA (cont.)

In other words:

n

w® = argmax E (T w)? = argmaxw’ X7 Xw.
[wll2=1 5= flwll2=1
wlw wlLw®

@ Using a similar argument as before with Rayleigh quotients, we
conclude that w? is an eigenvector associated to the second
largest eigenvalue of X7 X.

o Similarly, given w(l), . ,w(k), we define
n
wktD) = argmax Z(:UZTw)2 = argmax wl XT Xw.
l[wliz=1 i=1 [[w]l2=1
wlw® w@ | w®) wlwM w@ )

As before, the vector w**1) is an eigenvector associated to the
(k + 1)-th largest eigenvalue of X7 X.
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XTx =vuAU”

where U € RP*P is an orthogonal matrix and A € RP*P is diagonal.
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In summary, suppose
XTx =vuAU”

where U € RP*P is an orthogonal matrix and A € RP*P is diagonal.
(Eigendecomposition of X7 X)

@ Recall that the columns of U are the eigenvectors of X7 X and
the diagonal of A contains the eigenvalues of X7 X (i.e., the
(square of the) singular values of X).

@ Then the principal components of X are the columns of XU.
o Write U = (uy,...,up). Then the variance of the i-th principal
component is

(Xu) T (Xug) = ul XT Xu; = (UTXTXU) g = Ay

Conclusion: The variance of the i-th principal component is the
i-th eigenvalue of X7 X,
o We say that the first k PCs explain (3% Ay) /(2P Aui) x 100

percent of the variance.
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Example: zip dataset

Recall the zip dataset:

© 9298 images of digits 0 — 9.

@ Each image is in black/white with 16 x 16 = 256 pixels.
We use PCA to project the data onto a 2-dim subspace of R2?%6.
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Recall the zip dataset:

© 9298 images of digits 0 — 9.

@ Each image is in black/white with 16 x 16 = 256 pixels.
We use PCA to project the data onto a 2-dim subspace of R2?%6.
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Example: zip dataset (cont.)

Projecting the data on the first two principal components:
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Example: zip dataset (cont.)

Projecting the data on the first two principal components:

10 : T - T 9

Second principal component
o

-10 -5 0 5 10 15
First principal component

@ Note: = 27% variance explained by the first two PCAs.
@ ~ 90% variance explained by first 55 components.
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Principal component regression

@ PCAs can be directly used in a regression context.
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Principal component regression

@ PCAs can be directly used in a regression context.
Principal component regression: y € R™*!, X ¢ R"*P,
O Center y and each column of X (i.e., subtract mean from the
columns)
@ Compute the eigen-decomposition of X7 X:
XTX =UuAU".
© Compute k > 1 principal components:

Wi = (Xuq,. .., Xug) = XUy,

where U = (uy,...,up), and Uy = (uy,...,u) € RP*F,
@ Regress y on the principal components:
= (W W) I Wy,
© The PCR estimator is:

B = UrA, § ¥ = X By = XUypy.
Note: k is a parameter that needs to be chosen (using CV or
another method). Typically, one picks k to be significantly smaller

than p. 10/11
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Projection pursuit

@ PCA looks for subspaces with the most variance.
@ Can also optimize other criteria.
Projection pursuit (PP):
© Set up a projection “index” to judge the merit of a particular

one or two-dimensional projection of a given set of multivariate
data.

@ Use an optimization algorithm to find the global and local
extrema of that projection index over all 1/2-dimensional
projections of the data.

Example:(Izenman, 2013) The absolute value of kurtosis, |r4(Y")
of the one-dimensional projection Y = w” X has been widely used
as a measure of non-Gaussianity of Y.

@ Recall: The marginals of the multivariate Gaussian distribution
are Gaussian.

e Can maximize/minimize the kurtosis to find subspaces where
data looks Gaussian/non-Gaussian (e.g. to detect outliers).

]
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