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Motivation

High-dimensional data often has a low-rank structure.
Most of the �action� may occur in a subspace of Rp.

Problem: How can we discover low dimensional structures in data?

Principal components analysis: construct projections of the data
that capture most of the variability in the data.

Provides a low-rank approximation to the data.

Can lead to a signi�cant dimensionality reduction.
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Principal component analysis (PCA)

Let X ∈ Rn×p with rows x1, . . . , xn ∈ Rp. We think of X as n
observations of a random vector (X1, . . . , Xp) ∈ Rp.

Suppose each column has mean 0, i.e.,
∑n

i=1 xi = 01×p.

We want to �nd a linear combination w1X1 + · · ·+ wpXp with
maximum variance. (Intuition: we look for a direction in Rp where
the data varies the most.)

We solve:

w = argmax
‖w‖2=1

n∑
i=1

(xTi w)2.

(Note:
∑n

i=1(x
T
i w)2 is proportional to the sample variance of the

data since we assume each column of X has mean 0.)

Equivalently, we solve:

w = argmax
‖w‖2=1

(Xw)T (Xw) = argmax
‖w‖2=1

wTXTXw

Claim: w is an eigenvector associated to the largest eigenvalue of
XTX.
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Proof of claim: Rayleigh quotients

Let A ∈ Rp×p be a symmetric (or Hermitian) matrix. The Rayleigh

quotient is de�ned by

R(A, x) =
xTAx

xTx
=
〈Ax, x〉
〈x, x〉

, (x ∈ Rp, x 6= 0p×1).

Observations:
1 If Ax = λx with ‖x‖2 = 1, then R(A, x) = λ. Thus,

sup
x 6=0

R(A, x) ≥ λmax(A).

2 Let {λ1, . . . , λp} denote the eigenvalues of A, and let
{v1, . . . , vp} ⊂ Rp be an orthonormal basis of eigenvectors of

A. If x =
∑p

i=1 θivi, then R(A, x) =
∑p

i=1 λiθ
2
i∑n

i=1 θ
2
i
.

It follows that
sup
x6=0

R(A, x) ≤ λmax(A).

Thus, supx6=0R(A, x) = sup‖x‖2=1 x
TAx = λmax(A).
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Back to PCA

Previous argument shows that

w(1) = argmax
‖w‖2=1

n∑
i=1

(xTi w)2 = argmax
‖w‖2=1

wTXTXw

is an eigenvector associated to the largest eigenvalue of XTX.

First principal component:

The linear combination
∑p

i=1w
(1)
i Xi is the �rst principal

component of (X1, . . . , Xp).
Alternatively, we say that Xw(1) is the �rst (sample) principal

component of X.
It is the linear combination of the columns of X having the �most

variance�.
Second principal component: We look for a new linear
combination of the Xi's that

1 Is orthogonal to the �rst principal component, and

2 Maximizes the variance.
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Back to PCA (cont.)

In other words:

w(2) := argmax
‖w‖2=1

w⊥w(1)

n∑
i=1

(xTi w)2 = argmax
‖w‖2=1

w⊥w(1)

wTXTXw.

Using a similar argument as before with Rayleigh quotients, we
conclude that w(2) is an eigenvector associated to the second
largest eigenvalue of XTX.
Similarly, given w(1), . . . , w(k), we de�ne

w(k+1) := argmax
‖w‖2=1

w⊥w(1),w(2),...,w(k)

n∑
i=1

(xTi w)2 = argmax
‖w‖2=1

w⊥w(1),w(2),...,w(k)

wTXTXw.

As before, the vector w(k+1) is an eigenvector associated to the
(k + 1)-th largest eigenvalue of XTX.
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PCA: summary

In summary, suppose
XTX = UΛUT

where U ∈ Rp×p is an orthogonal matrix and Λ ∈ Rp×p is diagonal.
(Eigendecomposition of XTX.)

Recall that the columns of U are the eigenvectors of XTX and
the diagonal of Λ contains the eigenvalues of XTX (i.e., the
(square of the) singular values of X).

Then the principal components of X are the columns of XU .
Write U = (u1, . . . , up). Then the variance of the i-th principal

component is

(Xui)
T (Xui) = uTi X

TXui = (UTXTXU)ii = Λii.

Conclusion: The variance of the i-th principal component is the
i-th eigenvalue of XTX.
We say that the �rst k PCs explain (

∑k
i=1 Λii)/(

∑p
i=1 Λii)× 100

percent of the variance.
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Example: zip dataset

Recall the zip dataset:

1 9298 images of digits 0− 9.

2 Each image is in black/white with 16× 16 = 256 pixels.

We use PCA to project the data onto a 2-dim subspace of R256.
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Example: zip dataset (cont.)

Projecting the data on the �rst two principal components:

Note: ≈ 27% variance explained by the �rst two PCAs.
≈ 90% variance explained by �rst 55 components.
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Principal component regression

PCAs can be directly used in a regression context.

Principal component regression: y ∈ Rn×1, X ∈ Rn×p.
1 Center y and each column of X (i.e., subtract mean from the

columns)
2 Compute the eigen-decomposition of XTX:

XTX = UΛUT .
3 Compute k ≥ 1 principal components:

Wk := (Xu1, . . . , Xuk) = XUk,

where U = (u1, . . . , up), and Uk = (u1, . . . , uk) ∈ Rp×k.
4 Regress y on the principal components:

γ̂k := (W T
k Wk)

−1W T
k y.

5 The PCR estimator is:

β̂k := Ukγ̂k, ŷ(k) := Xβ̂k = XUkβ̂k.

Note: k is a parameter that needs to be chosen (using CV or
another method). Typically, one picks k to be signi�cantly smaller
than p.
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Projection pursuit

PCA looks for subspaces with the most variance.

Can also optimize other criteria.

Projection pursuit (PP):

1 Set up a projection �index� to judge the merit of a particular
one or two-dimensional projection of a given set of multivariate
data.

2 Use an optimization algorithm to �nd the global and local
extrema of that projection index over all 1/2-dimensional
projections of the data.

Example:(Izenman, 2013) The absolute value of kurtosis, |κ4(Y )|,
of the one-dimensional projection Y = wTX has been widely used
as a measure of non-Gaussianity of Y .
Recall: The marginals of the multivariate Gaussian distribution

are Gaussian.
Can maximize/minimize the kurtosis to �nd subspaces where

data looks Gaussian/non-Gaussian (e.g. to detect outliers).
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