MATH 829: Introduction to Data Mining and Analysis Linear Regression: old and new

Dominique Guillet

Departments of Mathematical Sciences University of Delaware

February 10, 2016

1/15

3/15

Linear Regression: old and new

- Typical problem: we are given n observations of variables X_1, \dots, X_n and Y.
- Goal: Use X₁,..., X_n to try to predict Y.
- Example: Cars data compiled using Kelley Blue Book (n = 805, p = 11)

- Find a linear model $Y = \beta_1 X_1 + \cdots + \beta_n X_n$.
- . In the example, we want:

price = $\beta_1 \cdot \text{mileage} + \beta_2 \cdot \text{cylinder} + ...$

2715

4/15

Linear regression: classical setting

p = nb, of variables, n = nb, of observations.

Classical setting:

- $n \gg p$ (n much larger than p). With enough observations, we hope to be able to build a good model.
- . Note: even if the "true" relationship between the variables is not linear, we can include transformations of variables.
- · E.g.

$$X_{p+1}=X_1^2, X_{p+2}=X_2^2, \dots$$

- Note: adding transformed variables can increase p significantly.
- A complex model requires a lot of observations

Modern setting:

- ullet In modern problems, it is often the case that $n \ll p$.
- Requires supplementary assumptions (e.g., sparsity).
- · Can still build good models with very few observations.

Classical setting

Idea:

$$Y \in \mathbb{R}^{n \times 1} \qquad X \in \mathbb{R}^{n \times p}$$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 $X = \begin{pmatrix} | & | & \cdots & | \\ \mathbf{x_1} & \mathbf{x_2} & \cdots & \mathbf{x_p} \\ | & | & \cdots & | \end{pmatrix}$

where $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{n \times 1}$ are the observations of $X_1, \dots X_n$.

- We want $Y = \beta_1 X_1 + \cdots + \beta_n X_n$
- Equivalent to solving

$$Y = X\beta$$
 $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_p \end{pmatrix}$.

Classical setting (cont.)

We need to solve $Y = X\beta$.

. Obviously, in general, the system has no solution.

 A popular approach is to solve the system in the least squares sense:

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|Y - X\beta\|^2.$$

How do we compute the solution?

Calculus approach:

$$\begin{split} \frac{\partial}{\partial \beta_i} \|Y - X\beta\|^2 &= \frac{\partial}{\partial \beta_i} \sum_{k=1}^n (y_i - X_{k1}\beta_1 - X_{k2}\beta_2 - \dots - X_{kp}\beta_p)^2 \\ &= 2 \sum_{k=1}^n (y_i - X_{k1}\beta_1 - X_{k2}\beta_2 - \dots - X_{kp}\beta_p) \times (-X_{kl}) \end{split}$$

Therefore. =

$$\sum_{k=1}^{n} X_{ki} (X_{k1}\beta_1 + X_{k2}\beta_2 + \dots + X_{kp}\beta_p) = \sum_{k=1}^{n} X_{ki} y_i$$

Calculus approach (cont.)

Now

$$\sum_{k=1}^n X_{ki}(X_{k1}\beta_1 + X_{k2}\beta_2 + \cdots + X_{kp}\beta_p) = \sum_{k=1}^n X_{ki}y_i \qquad i=1,\ldots,p,$$

is equivalent to:

$$X^T X \beta = X^T \eta$$
 (Normal equations).

We compute the Hessian:

$$\frac{\partial^{2}}{\partial \beta_{i}\beta_{i}}||Y - X\beta||^{2} = 2X^{T}X.$$

If X^TX is invertible, then X^TX is positive definite and

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

is the unique minimum of $\|Y - X\beta\|^2$.

0/15

0/15

Linear algebra approach

Want to solve $Y = X\beta$.

Linear algebra approach: Recall: If $V \subset \mathbb{R}^n$ is a subspace and $w \notin V$, then the best approximation of w be a vector in V is

"Best" in the sense that:

$$\|w - \operatorname{proj}_V(w)\| \le \|w - v\| \quad \forall v \in V.$$

Here

If $Y \not\in \operatorname{col}(X)$, then the best approximation of Y by a vector in $\operatorname{col}(X)$ is

$$\operatorname{proj}_{\operatorname{col}(X)}(Y)$$
.

7/15

Linear algebra approach (cont.)

So
$$||Y - \text{proj}_{col(X)}(Y)|| \le ||Y - X\beta|| \quad \forall \beta \in \mathbb{R}^p$$
.

Therefore, to find $\hat{\beta}$, we solve

$$X\hat{\beta} = \operatorname{proj}_{m_{i}(X)}(Y)$$

(Note: this system always has a solution.)

With a little more work, we can find an explicit solution:

$$Y - X\hat{\beta} = Y - \operatorname{proj}_{\operatorname{rol}(X)}(Y) = \operatorname{proj}_{\operatorname{rol}(X)^{\perp}}(Y).$$

Recall
$$col(X)^{\perp} = null(X^{T}).$$

Thus,

$$Y - X\hat{\beta} = \text{proj}_{\text{null}(X^T)}(Y) \in \text{null}(X^T).$$

That implies:
$$X^{T}(Y - X\hat{\beta}) = 0$$
.

Equivalently,
$$X^T X \hat{\beta} = X^T Y$$
 (Normal equations).

The least squares theorem

Theorem (Least squares theorem)

Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. Then

- Ax = b always has a least squares solution x̂.
- A vector \(\hat{x}\) is a least squares solution iff it satisfies the normal equations

$$A^T A \hat{x} = A^T b.$$

 \bigcirc \hat{x} is unique \Leftrightarrow the columns of A are linearly independent \Leftrightarrow ATA is invertible. In that case, the unique least squares solution is given by

$$\hat{x} = (A^T A)^{-1} A^T b.$$

Building a simple linear model with Python

The file JSE Car Lab.csv:

36336, 9333489496, 18342, Butch, Century, Sedan 40, Sedan A. S. L. & S. B. B. 15840.042384139,22904,Buick,Century,Sedox 40,Sedox,6,3,1,4,1,1,0 14863.0928695579,24021,Buick,Century,Sedox 40,Sedox,6,3,1,4,1,1,0,1 15295.0082685780,27325,Buick,Century,Sedox 40,Sedox,6,3,1,4,1,1,1

Loading the data with the headers using Pandas:

import pandas as pd

data = pd.read csv(', /data/JSE Car Lab.csv', delimiter=', ')

We extract the numerical columns:

y = np.array(data['Price']) x = np.arrav(data['Mileage'])

x = x.reshape(len(x).1)

10/15

Building a simple linear model with Python (cont.)

The scikit-learn package provides a lot of very powerful functions /objects to analyse datasets.

Typical syntax:

- Create object representing the model.
- Call the fit method of the model with the data as arguments.
- Use the predict method to make predictions.

from sklearn.linear model import LinearRegression lin_model = LinearRegression(fit_intercept=True) lin_model.fit(x,y)

print lin_model.coef_ print lin model.intercept

We obtain price $\approx -0.17 \cdot \text{mileage} + 24764.5$.

Measuring the fit of a linear model

How good is our linear model?

We examine the residual sum of squares:

$$R SS(\hat{\beta}) = ||y - X\hat{\beta}||^2 = \sum_{k=1}^{n} (y_i - \hat{y}_i)^2.$$

- ((y-lin_model.predict(x)) **2).sum()
- We find: 76855792485.91. Quite a large error...The average a ben lut e e rro r
- (abs(v-lin model.predict(x))).mean() is 7596.28 Not so good
- We examine the distribution of the residuals: import matplotlib.pvplot as plt
- plt.hist(y-lin_model.predict(x)) plt.show()

Measuring the fit of a linear model (cont.)

Histogram of the residuals:

- The heavy tail suggests there may be outliers.
- It also suggests transforming the response variable using a transformation such as log, √, or 1/x.

13/15

Improving the model

- Add more variables to the model.
- Select the best variables to include.
- Use transformations.
- Separate cars into categories (e.g. exclude expansive cars).

etc.

For example, let us use all the variables, and exclude Cadillacs from the dataset.

Average absolute error drops to 4241.21.

Measuring the fit of a linear model (cont.)

Plotting the residuals as a function of the fitted values, we immediately observe some patterns.

Outliers? Separate categories of cars?

14/15