MATH 829: Introduction to Data Mining and Analysis
 Linear Regression: old and new

Dominique Guillot
Departments of Mathematical Sciences
University of Delavare

February 10, 2016

Classical setting

Idea:

$$
\begin{gathered}
Y \in \mathbb{R}^{n \times 1} \quad X \in \mathbb{R}^{n \times p} \\
Y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right) \quad X=\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{\mathrm{p}} \\
\mid & \mid & \ldots & \mid
\end{array}\right),
\end{gathered}
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{p}} \in \mathbb{R}^{n \times 1}$ are the observations of $X_{1}, \ldots X_{p}$.

- We want $Y=\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}$.
- Equivalent to solving

$$
Y=X \beta \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{p}
\end{array}\right) .
$$

Classical setting (cont.)

Calculus approach (cont.)

Now
$\sum_{k=1}^{n} X_{k i}\left(X_{k 1} \beta_{1}+X_{k 2} \beta_{2}+\cdots+X_{k p} \beta_{p}\right)=\sum_{k=1}^{n} X_{k i} y_{i} \quad i=1, \ldots, p$,
is equivalent to:

$$
X^{T} X \beta=X^{T} y \quad \text { (Normal equations). }
$$

We compute the Hessian:

$$
\frac{\partial^{2}}{\partial \beta_{i} \beta_{j}}\|Y-X \beta\|^{2}=2 X^{T} X
$$

If $X^{T} X$ is invertible, then $X^{T} X$ is positive definite and

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

is the unique minimum of $\|Y-X \beta\|^{2}$.

Linear algebra approach

Want to solve $Y=X \beta$.
Linear algebra approach: Recall: If $V \subset \mathbb{R}^{n}$ is a subspace and $w \notin V$, then the best approximation of w be a vector in V is

$$
\operatorname{proj}_{V}(w) .
$$

"Best" in the sense that:

$$
\left\|w-\operatorname{proj}_{V}(w)\right\| \leq\|w-v\| \quad \forall v \in V .
$$

Here:

If $Y \notin \operatorname{col}(X)$, then the best approximation of Y by a vector in $\operatorname{col}(X)$ is

$$
\operatorname{proj}_{\operatorname{col}(X)}(Y)
$$

Linear algebra approach (cont.)

So

$$
\left\|Y-\operatorname{proj}_{\infty l}(X)(Y)\right\| \leq\|Y-X \beta\| \quad \forall \beta \in \mathbb{R}^{p}
$$

Therefore, to find $\hat{\beta}$, we solve

$$
X \hat{\beta}=\operatorname{proj}_{\operatorname{col}(X)}(Y)
$$

(Note: this system always has a solution.)
With a little more work, we can find an explicit solution:

$$
Y-X \hat{\beta}=Y-\operatorname{proj}_{\infty 01(X)}(Y)=\operatorname{proj}_{\infty 0 l(X)^{\perp}}(Y) .
$$

Recall
Thus,
$\operatorname{col}(X)^{\perp}=\operatorname{null}\left(X^{T}\right)$.

That implies:
Equivalently,

$$
X^{T}(Y-X \hat{\beta})=0
$$

$X^{T} X \hat{\beta}=X^{T} Y \quad$ (Normal equations).

Building a simple linear model with Python

The file JSE_Car_Lab.csv:

Loading the data with the headers using Pandas:
import pandas as pd
data = pd.read_csv('./data/JSE_Car_Lab.csv',delimiter=',')
We extract the numerical columns:
$\mathrm{y}=\mathrm{np} . \operatorname{array}($ data['Price'])
$\mathrm{x}=\mathrm{np} . \operatorname{array}$ (data['Mileage'])
$x=x . r e s h a p e(1 e n(x), 1)$

Building a simple linear model with Python (cont.)

The scikit-learn package provides a lot of very powerful functions/objects to analyse datasets.

Typical syntax:

- Create object representing the model.
- Call the fit method of the model with the data as arguments.
- Use the predict method to make predictions.

```
from sklearn.linear_model import LinearRegression
lin_model = LinearRegression(fit_intercept=True)
lin_model.fit(x,y)
print lin_model.coef_
print lin_model.intercept_
We obtain price }\approx-0.17\cdot\mathrm{ mileage }+24764.5\mathrm{ .
```


Measuring the fit of a linear model

How good is our linear model?

- We examine the residual sum of squares:

$$
\operatorname{RSS}(\hat{\beta})=\|y-X \hat{\beta}\|^{2}=\sum_{k=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} .
$$

((y-lin_model.predict (x))**2).sum()
We find: 76855792485.91. Quite a large error. . . The average absolute error:
(abs(y-lin_model.predict(x))).mean()
is 7596.28 . Not so good. .

- We examine the distribution of the residuals:
import matplotlib.pyplot as plt plt.hist(y-lin_model.predict(x))
plt.show()

Histogram of the residuals:

- The heavy tail suggests there may be outliers.
- It also suggests transforming the response variable using a transformation such as $\log , \sqrt{ }$, or $1 / x$.

Plotting the residuals as a function of the fitted values, we immediately observe some patterns.

Outliers? Separate categories of cars?

Improving the model

- Add more variables to the model.
- Select the best variables to include.
- Use transformations.
- Separate cars into categories (e.g. exclude expansive cars).
- etc.

For example, let us use all the variables, and exclude Cadillacs from the dataset.

Average absolute error drops to 4241.21 .

