MATH 829: Introduction to Data Mining and Analysis Support vector machines

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 11, 2016

1/10

Hyperplanes (cont.)

Let

$$H = \{x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0\}.$$

Note that for $x_0, x_1 \in H$

 $\beta^{T}(x_{0} - x_{1}) = 0.$

Thus β is perpendicular to H. It follows that for $x\in\mathbb{R}^n,$

$$d(x,H) = \frac{\beta^T}{\|\beta\|}(x-x_0) = \frac{\beta_0 + \beta^T x}{\|\beta\|}.$$

Hyperplan

Recall:

- \bullet A $\mathit{hyperplane}\ H$ in $V=\mathbb{R}^n$ is a subspace of V of dimension
- n-1 (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via $H = \{x \in \mathbb{R}^n : \beta^T x = 0\} = \operatorname{span}(\beta)^{\perp}.$
- ullet An affine hyperplane H in \mathbb{R}^n is a subset of the form

$$H = \{x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0\}$$

where $\beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^n$

• We often use the term "hyperplane" for "affine hyperplane".

2/10

Separating hyperplane

Suppose we have binary data with labels $\{+1,-1\}$. We want to separate data using an (affine) hyperplane.

15 L, Rip no 4.14. | O norge = 1611

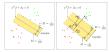
Classify using $G(x) = \operatorname{sgn}(x^T \beta + \beta_0)$.

- Separating hyperplane may not be unique.
- Separating hyperplane may not exist (i.e., data may not be separable).

3/10

Margins

Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").



Data: $(y_i,x_i) \in \{+1,-1\} \times \mathbb{R}^p$ $(i=1,\ldots,n).$ Suppose $\beta_0 + \beta^T x$ is a separating hyperplane with $\|\beta\| = 1$. Note that:

$$y_i(x_i^T \beta + \beta_0) > 0 \Rightarrow \text{Correct classification}$$

 $y_i(x_i^T \beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification}$

Also, $|y_i(x_i^T\beta+\beta_0)|=$ distance between x and hyperplane (since $||\beta||=1$)

5/10

Support vector machines

• The previous problem works well when the data is separable.

What happens if there is no way to find a margin?

• We allow some points to be on the wrong side of the margin, but keep control on the error. We replace $u_i(x^T\beta + \beta_0) \ge M$ by

$$y_i(x_i^T \beta + \beta_0) > M(1 - \xi_i), \quad \xi_i > 0,$$

and add the constraint

$$\sum^n \xi_i \leq C \qquad \text{for some fixed constant } C > 0.$$

The problem becomes:

$$\begin{aligned} & \max_{\beta_0,\beta \in \mathbb{R}^n, \|\beta\|=1} M \\ & \text{subject to } y_i(x_i^T \beta + \beta_0) \geq M(1-\xi_i) \\ & \xi_i \geq 0, \qquad \sum_n \xi_i \leq C. \end{aligned}$$

Margins (cont.)

Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\| = 1} M$$
subject to $y_i(x_i^T \beta + \beta_0) \ge M$ $(i = 1, ..., n)$.

We will transform the problem into a usual form used in convex optimization.

We can remove $\|\beta\|=1$ by replacing the constraint by

$$\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \ge M$$
, or equivalently, $y_i(x_i^T \beta + \beta_0) \ge M \|\beta\|$.

We can always rescale (β,β_0) so that $\|\beta\|=1/M$. Our problem is therefore equivalent to

$$\min_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{2} \|\beta\|^2$$
subject to $u_i(x_i^T \beta + \beta_0) \ge 1$ $(i = 1, ..., n)$.

6/10

We now recognize the problem as a convex optimization problem with a quadratic objective, and linear inequality constraints.

Support vector machines (cont.)

As before, we can transform the problem into its "normal" form:

$$\begin{split} & \min_{\beta \beta, \beta} \frac{1}{2} \|\beta\|^2 \\ & \text{subject to } y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i \\ & \xi_i \geq 0, \qquad \sum_{n} \xi_i \leq C. \end{split}$$

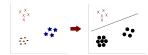
Problem can be solved using standard optimization packages.

7/10 0/10

Multiple classes of data

The SVM is a binary classifier. How can we classify data with K>2 classes?

o One versus all:(or one versus the rest) Fit the model to separate each class against the remaining classes. Label a new point x according to the model for which $x^T\beta+\beta_0$ is the largest.



9/10

Need to fit the model K times.

Multiple classes of data (cont.)

- One versus one:
- Train a classifier for each possible pair of classes. V(K) = V(K 1)/2 and pair
- Note: There are $\binom{K}{2} = K(K-1)/2$ such pairs. \bullet Classify a new points according to a majority vote: count the
- Classify a new points according to a majority vote: count the number of times the new point is assign to a given class, and pick the class with the largest number.

Need to fit the model $\binom{K}{2}$ times (computationally intensive).

10/10