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Separating sets: mapping the features

We saw in the previous lecture how support vector machines

provide a robust way of �nding a separating hyperplane:

What if the data is not separable? Can map into a

high-dimensional space.
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A brief intro to duality in optimization

Consider the problem:

min
x∈D⊂Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

Denote by p? the optimal value of the problem.

Lagrangian: L : D × Rm × Rp → R

L(x, λ, ν) := f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x).

Lagrange dual function: g : Rm × Rp → R

g(λ, ν) := inf
x∈D

L(x, λ, ν).

Claim: for every λ ≥ 0,

g(λ, ν) ≤ p?.
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A brief intro to duality in optimization

Dual problem:

max
λ∈Rm, ν∈Rp

g(λ, ν)

subject to λ ≥ 0.

Denote by d? the optimal value of the dual problem. Clearly

d? ≤ p? (weak duality).

Strong duality: d? = p?.

Does not hold in general.

Usually holds for convex problems.

(See e.g. Slater's constraint quali�cation).
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The kernel trick

Recall that SVM solves:

min
β0,β,ξ

1

2
‖β‖2 + C

n∑
i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi

ξi ≥ 0.

The associated Lagrangian is

LP =
1

2
‖β‖2 +C

n∑
i=1

ξi−
n∑
i=1

αi[yi(x
T
i β+β0)− (1− ξi)]−

n∑
i=1

µiξi,

which we minimize w.r.t. β, β0, ξ. Setting the respective

derivatives to 0, we obtain:

β =
n∑
i=1

αiyixi, 0 =
n∑
i=1

αiyi, αi = C − µi (i = 1, . . . , n).
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The kernel trick (cont.)

Substituting into LP , we obtain the Lagrange (dual) objective

function:

LD =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj .

The function LD provides a lower bound on the original objective

function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by

maximizing LD under the previous constraints (strong duality).

Now suppose h : Rp → Rm, transforming our features to

h(xi) = (h1(xi), . . . , hm(xi)) ∈ Rm.

The Lagrange dual function becomes:

LD =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjh(xi)
Th(xj).

Important observation: LD only depends on 〈h(xi), h(xj)〉.
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Positive de�nite kernels

Important observation: LD only depends on 〈h(xi), h(xj)〉.
In fact, we don't even need to specify h, we only need:

K(x, x′) = 〈h(x), h(x′)〉.

Question: Given K : Rp × Rp → R, when can we guarantee that

K(x, x′) = 〈h(x), h(x′)〉

for some function h?

Observation: Suppose K has the desired form. Then, for

x1, . . . , xN ∈ Rp, and vi := h(xi),

(K(xi, xj)) = (〈h(xi), h(xj)〉)
= (〈vi, vj〉)
= V TV, where V = (vT1 , . . . , v

T
N ).

Conclusion: the matrix (K(xi, xj)) is positive semide�nite.
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Positive de�nite kernels (cont.)

Necessary condition to have K(x, x′) = 〈h(x), h(x′)〉:

(K(xi, xj))
N
i,j=1 is psd

for any x1, . . . , xN , and any N ≥ 1.
Note also that K(x, x′) = K(x′, x) if K(x, x′) = 〈h(x), h(x′)〉.

De�nition: Let X be a set. A symmetric kernel K : X × X → R
is said to be a positive (semi)de�nite kernel if

(K(xi, xj))
N
i,j=1 is positive (semi)de�nite

for all x1, . . . , xN ∈ X and all N ≥ 1.

A reproducing kernel Hilbert space (RKHS) over a set X is a

Hilbert space H of functions on X such that for each x ∈ X , there
is a function kx ∈ H such that

〈f, kx〉H = f(x) ∀f ∈ H.

Write k(·, x) := kx(·) (k = the reproducing kernel of H).
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Positive de�nite kernels (cont.)

One can show that H is a RKHS over X i� the evaluation

functionals Λx : H → C

f 7→ Λx(f) = f(x)

are continuous on H (use Riesz's representation theorem).

Theorem: Let k : X × X → R be a positive de�nite kernel. Then

there exists a RKHS Hk over X such that
1 k(·, x) ∈ Hk for all x ∈ X .
2 span(k(·, x) : x ∈ X ) is dense in Hk.
3 k is a reproducing kernel on Hk.

Now, de�ne h : X → Hk by

h(x) := k(·, x).

Then

〈h(x), h(x′)〉Hk
= 〈k(·, x), k(·, x′)〉Hk

= k(x, x′).

Moral: Positive de�nite kernels arise as 〈h(x), h(x′)〉H.
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Back to SVM

We can replace h by any positive de�nite kernel in the SVM

problem:

LD =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjh(xi)
Th(xj)

=
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi,xj).

Three popular choice in the SVM literature:

K(x, x′) = e−γ‖x−x
′‖22 (Gaussian kernel)

K(x, x′) = (1 + 〈x, x′〉)d (d-th degree polynomial)

K(x, x′) = tanh(κ1〈x, x′〉+ κ2) (Neural networks).
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Constructing pd kernels

Properties of pd kernels:

1 If k1, . . . , kn are pd, then
∑n

i=1 λiki is pd for any λ1, . . . , λn ≥ 0.

2 If k1, k2 are pd, then k1k2 is pd (Schur product theorem).

3 If (ki)i≥1 are kernels, then lim ki is a kernel (if the limit exists).

Exercise: Use the above properties to show that e−γ‖x−x
′‖22 and

(1 + 〈x, x′〉)d are positive de�nite kernels.

De�nition: A function h : Rp → R is said to be positive de�nite if

K(x, x′) := h(x− x′)

is a positive de�nite kernel.

P.d. functions thus provide a way of constructing pd kernels.

Theorem: (Bochner) A continuous function h : Rp → C is

positive de�nite if and only if

h(x) =

∫
Rp

e−i〈x,ω〉 dµ(ω),

for some �nite nonnegative Borel measure on Rp.
11/12

Example: decision function

ESL, Figure 12.3 (solid black line = decision boundary, dotted line = margin).
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