MATH 829: Introduction to Data Mining and Analysis Support vector machines and kernels

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 14, 2016

Separating sets: mapping the features

We saw in the previous lecture how support vector machines provide a robust way of finding a separating hyperplane:

What if the data is not separable? Can map into a high-dimensional space.

2/12

A brief intro to duality in optimization

Consider the problem:

$$\begin{array}{ll} \min_{x\in\mathcal{D}\subset\mathbb{R}^n} & f_0(x) \\ \text{subject to} & f_i(x)\leq 0, \qquad i=1,\ldots,m \\ & h_i(x)=0, \qquad i=1,\ldots,p. \end{array}$$

Denote by p^* the optimal value of the problem. Lagrangian: $L : D \times \mathbb{R}^m \times \mathbb{R}^p \rightarrow \mathbb{R}$

$$L(x,\lambda,\nu):=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)$$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) := \inf_{x \in D} L(x, \lambda, \nu)$$

Claim: for every $\lambda \ge 0$,

$$g(\lambda, \nu) \le p^*$$
.

A brief intro to duality in optimization

Dual problem:

$$\max_{\lambda \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{p}} g(\lambda, \nu)$$
subject to $\lambda \ge 0$.

Denote by d* the optimal value of the dual problem. Clearly

 $d^* \le p^*$ (weak duality).

Strong duality: $d^{\star} = p^{\star}$.

- Does not hold in general.
- Usually holds for convex problems.
- (See e.g. Slater's constraint qualification).

1/12

Recall that SVM solves:

$$\begin{split} \min_{\beta_0,\beta,\xi} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to } y_i(x_i^T\beta + \beta_0) \geq 1 - \xi \\ \xi_i \geq 0. \end{split}$$

The associated Lagrangian is

$$L_{P} = \frac{1}{2} \|\beta\|^{2} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i} [y_{i}(x_{i}^{T}\beta + \beta_{0}) - (1 - \xi_{i})] - \sum_{i=1}^{n} \mu_{i}\xi_{i},$$

which we minimize w.r.t. $\beta,\beta_0,\xi.$ Setting the respective derivatives to 0, we obtain:

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i, \quad 0 = \sum_{i=1}^{n} \alpha_i y_i, \quad \alpha_i = C - \mu_i \quad (i = 1, \dots, n).$$

5/12

Positive definite kernels

Important observation: L_D only depends on $\langle h(x_i), h(x_j) \rangle$. In fact, we don't even need to specify h, we only need:

 $K(x, x') = \langle h(x), h(x') \rangle.$

Question: Given $K:\mathbb{R}^p\times\mathbb{R}^p\to\mathbb{R},$ when can we guarantee that

$$K(x, x') = \langle h(x), h(x') \rangle$$

for some function h?

Observation: Suppose K has the desired form. Then, for $x_1, \ldots, x_N \in \mathbb{R}^p$, and $v_i := h(x_i)$.

$$\begin{split} (K(x_i, x_j)) &= (\langle h(x_i), h(x_j) \rangle) \\ &= (\langle v_i, v_j \rangle) \\ &= V^T V, \quad \text{where } V = (v_1^T, \dots, v_N^T) \end{split}$$

Conclusion: the matrix $(K(x_i, x_j))$ is positive semidefinite.

The kernel trick (cont.)

Substituting into L_P , we obtain the Lagrange (dual) objective function:

$$L_D = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j.$$

The function L_{D} provides a lower bound on the original objective function at any feasible point (weak duality).

The solution of the original SVM problem can be obtained by maximizing L_D under the previous constraints (strong duality). Now suppose $h : \mathbb{R}^p \to \mathbb{R}^m$ transforming our features to

$$h(x_i) = (h_1(x_i), ..., h_m(x_i)) \in \mathbb{R}^m$$
.

The Lagrange dual function becomes:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x_i})^{\mathrm{T}} \mathbf{h}(\mathbf{x_j}).$$

Important observation: L_D only depends on $(h(x_i), h(x_j))$.

6/12

Positive definite kernels (cont.)

 $(K(x_i, x_j))_{i,j=1}^N$ is psd

for any x_1, \ldots, x_N , and any $N \ge 1$. • Note also that K(x, x') = K(x', x) if $K(x, x') = \langle h(x), h(x') \rangle$.

Definition: Let X be a set. A symmetric kernel $K : X \times X \rightarrow \mathbb{R}$ is said to be a *positive (semi)definite kernel* if

 $(K(x_i, x_j))_{i,j=1}^N$ is positive (semi)definite

for all $x_1, \ldots, x_N \in \mathcal{X}$ and all $N \ge 1$.

• A reproducing kernel Hilbert space (RKHS) over a set X is a Hilbert space H of functions on X such that for each $x \in X$, there is a function $k_x \in H$ such that

$$(f, k_x)_H = f(x) \quad \forall f \in H.$$

Write $k(\cdot, x) := k_x(\cdot)$ (k = the reproducing kernel of H).

Positive definite kernels (cont.)

One can show that ${\mathcal H}$ is a RKHS over ${\mathcal X}$ iff the evaluation functionals $\Lambda_x:{\mathcal H}\to{\mathbb C}$

$$f \mapsto \Lambda_x(f) = f(x)$$

are continuous on \mathcal{H} (use Riesz's representation theorem). Theorem: Let $k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ be a positive definite kernel. Then

there exists a RKHS \mathcal{H}_k over \mathcal{X} such that \mathbf{O} $k(\cdot, x) \in \mathcal{H}_k$ for all $x \in \mathcal{X}$.

♦ k(·, x) ∈ H_k for all x ∈ A.
 ♦ span(k(·, x) : x ∈ X) is dense in H_k.
 ♦ k is a reproducing kernel on H_k.

Now, define $h : X \rightarrow H_k$ by

$$h(x) := k(\cdot, x).$$

Then

 $\langle h(x), h(x') \rangle_{\mathcal{H}_k} = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}_k} = k(x, x').$

Moral: Positive definite kernels arise as $\langle h(x), h(x') \rangle_{\mathcal{H}}$.

9/12

Back to SVM

We can replace *h* by any positive definite kernel in the SVM problem:

$$L_D = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{h}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{h}(\mathbf{x}_j)$$
$$= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j).$$

Three popular choice in the SVM literature:

$$\begin{split} &K(x,x') = e^{-\gamma \|x-x'\|_{2}^{2}} \qquad (\text{Gaussian kernel}) \\ &K(x,x') = (1 + \langle x,x' \rangle)^{d} \qquad (d\text{-th degree polynomial}) \\ &K(x,x') = \tanh(\kappa_{1}\langle x,x' \rangle + \kappa_{2}) \qquad (\text{Neural networks}). \end{split}$$

10/12

Constructing pd kernels

Properties of pd kernels:

• If k_1, \ldots, k_n are pd, then $\sum_{i=1}^n \lambda_i k_i$ is pd for any $\lambda_1, \ldots, \lambda_n \ge 0$.

() If k_1, k_2 are pd, then k_1k_2 is pd (Schur product theorem).

(a) If $(k_i)_{i>1}$ are kernels, then $\lim k_i$ is a kernel (if the limit exists).

Exercise: Use the above properties to show that $e^{-\gamma\|x-x'\|_2^2}$ and $(1+\langle x,x'\rangle)^d$ are positive definite kernels.

Definition: A function $h : \mathbb{R}^p \to \mathbb{R}$ is said to be positive definite if

$$K(x, x') := h(x - x')$$

is a positive definite kernel.

P.d. functions thus provide a way of constructing pd kernels. **Theorem:** (Bochner) A continuous function $h: \mathbb{R}^p \to \mathbb{C}$ is positive definite if and only if

$$h(x) = \int_{\mathbb{R}^p} e^{-i\langle x,\omega \rangle} d\mu(\omega),$$

for some finite nonnegative Borel measure on \mathbb{R}^p .

Example: decision function

ES L, Figure 12.3 (solid black line = decision boundary, dotted line = margin).