MATH 829: Introduction to Data Mining and Analysis Splines

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

March 16 2016

2/22

Splines

Splines are piecewise polynomials with a given number of continuous derivatives.

For example, cubic splines are degree 3 polynomials pasted together to get 2 continuous derivatives.

Transforming data

- Very often the relationship between variables is not linear.
- We saw before that transformations of the features can be used.
- ullet If $h_m:\mathbb{R}^p o\mathbb{R}$, then we can use the model

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X).$$

Common transformations:

- \bullet $h_m(X) = X_m$ (Usual linear regression).
- \bullet $h_m(X) = X_j^2$ or $h_m(X) = X_j X_k$ (Taylor polynomiak).
- $h_m(X) = \log(X_i), \sqrt{X_i}$
- $h_m(X) = I(L_m \le X_k < U_m)$ (Indicator functions in some intervals).

Note:

- Need a large sample size to include many functions.
- · Risk of over-fitting when including too many functions.

.

Splines (cont.)

More generally, given knots $t_0 < t_1 < \dots < t_k$, a spline of degree n is a piecewise polynomial

$$S(x) := \begin{cases} S_0(x) & t_0 \le x \le t_1 \\ S_1(x) & t_1 \le x \le t_2 \\ \vdots \\ S_{k-1}(x) & t_{k-1} \le x \le t_k \end{cases}$$

such that

- \circ $S_i(x)$ is a polynomial of degree n.
- S(x) is n-1 times continuously differentiable.
- ullet Most commonly used value is n=3 (cubic splines).
- ${\bf \bullet}$ Said to be the smallest n for which it is impossible to detect the location of the knots by eye.
- A natural cubic spline imposes the supplementary conditions that
 the spline is linear beyond the boundary knots.

Basis for cubic splines

Cubic splines basis: With 2 knots $\mathcal{E}_1, \mathcal{E}_2$:

$$h_1(X) = 1$$
, $h_3(X) = X^2$, $h_5(X) = (X - \xi_1)_+^3$,
 $h_2(X) = X$, $h_4(X) = X^3$, $h_8(X) = (X - \xi_2)_-^3$,

More generally, with M knots, add $(X - \xi_3)_+^3, \dots, (X - \xi_M)_+^3$. Natural cubic solines basis: With M knots

$$N_1(X) = 1$$
, $N_2(X) = X$, $N_{k+2}(X) = d_k(X) - d_{M-1}(x)$,

where

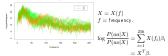
$$d_k(X) = \frac{(X - \xi_k)_+^3 - (X - \xi_M)_+^3}{\xi_M - \xi_k}.$$

- Can include spline basis in linear regression.
- . Not always obvious how to choose the knots.
- Natural splines can be used to avoid the erratic behavior of polynomials beyond the knots.

/11

Example: Phoneme recognition

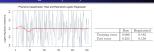
Example: Phoneme Recognition (ESL, Example 5.2.3)



15 examples each of the phonemes "aa" and "ao" sampled from a total of 695 "aa"s and 1022 "ao"s

6/:

Phoneme recognition (cont.)



Logistic regression coefficients, and amouthed version with natural cubic splines.

$$\beta(f) = \sum_{i=1}^{M} h_m(f)\theta_m = \mathbf{H}\theta,$$

where ${f H}$ is a p imes M matrix of spline functions. Now note that

$$X^T \beta = X^T \mathbf{H} \theta$$

Letting $x^* = \mathbf{H}^T x$, we can therefore fit the logistic regression on the smoothed inputs.

Preprocessing data

- In the previous example, we fitted a logistic regression to transformed inputs
- Non-linear transformations are very useful for preprocessing data
- Powerful method for improving the performance of a learning algorithm.

0/13

Smoothing splines

- Splines can be very useful.
- Problem: How to choose the knots in an optimal way?

Smoothing splines avoid this problem.

Smoothing splines: Find a function $f \in C^2$ the minimizes

$$RSS(f, \lambda) := \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(t)^2 dt$$
 $(\lambda > 0)$

- First term controls closeness to data.
- Second term controls curvature of the function.

Note:

- If $\lambda = 0$: any function that interpolates the data works.
- $_{\bullet}$ As $\lambda = \infty$: least squares fit.

9/11

Nonparametric logistic regression

Consider the logistic regression problem with a binary output.

$$\log \frac{P(Y = 1|X = x)}{P(Y = 0|X = x)} = f(x).$$

Equivalently,

$$P(Y = 1|X = x) = \frac{e^{f(x)}}{1 + e^{f(x)}}$$
.

Before, we used a linear model for f, and chose the coefficients using maximum likelihood.

Consider the penalized log-likelihood criterion:

$$\begin{split} l(f;\lambda) &= \sum_{i=1}^n [y_i \log p(x_i) + (1-y_i) \log (1-p(x_i))] - \frac{1}{2} \lambda \int f''(t) \ dt \\ &= \sum_{i=1}^n [y_i f(x_i) - \log (1+e^{f(x_i)})] - \frac{1}{2} \lambda \int f''(t) \ dt. \end{split}$$

One can show that the optimal f is a natural spline with knots at the unique x_i s (see ESL for more details). Smoothing splines (cont)

- To compute a smoothing spline, we need to optimize on an infinite dimensional space of functions.
- Remarkably, it can be shown that the problem has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline with knots at the unique values of the x_i , $i=1,\ldots,N$. (See next homework).
- The penalty term translates to a penalty on the spline coefficients, which are shrunk some of the way toward the linear fit

10/11

11/11