Transforming data

@ Very often the relationship between variables is not linear.
@ We saw before that transformations of the features can be used.

MATH 829: Introduction to Data Mining and o If hyy : R” — R. then we can use the model

Analysis
Splines

o
fX) =3 Buhm(X).

m=1

Common transformations:

Dominique Guillot O hu(X) = X, (Usual linear regression)
hn(X) = X2 m(X) = X; Xy (Tayl | ial:
Departments of Mathematical Sciences 0 /in(X) 5 or hin(X) Xk (Taylor polynomials)
University of Delaware Q hun(X) = log(X;), /.
Q hu(X) =I(Ly < Xy < Uy) (Indicator functions in some
March 16, 2016 intervals)
Note:

o Need a large sample size to include many functions
o Risk of over-fitting when including too many functions,
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Splines Splines (cont.)

More generally, given knots t( < t; < --- < t;, a spline of degree n
Splines are piecewise polynomials with a given number of is a piecewise polynomial
continuous derivatives.
So(x)  tosT<th
‘Cubic Spline. Si(x) th<a<ty
i S(a) ==

N \ I Serla) i<z <ty
* S such that

I @ Si(x) is a polynomial of degree n.

0 @ S(x) is n— 1 times continuously differentiable.

© Most commonly used value is 7 = 3 (cubic splines)

o Said to be the smallest n for which it is impossible to detect the
location of the knots by eye.

@ A natural cubic spline imposes the supplementary conditions that
the spline is linear beyond the boundary knots.
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For example, cubic splines are degree 3 polynomials pasted together
to get 2 continuous derivatives.



splines basis: With 2 knots &1, &:
m(X)=1,  hs(X)=X%  h5(X)=(X-&)},
hao(X) =X, ha(X)=X%  he(X) = (X — &)%.
More generally, with M knots, add (X — &)2,..., (X -&nt
Natural cubic splines basis: With 1 knots

No(X) = X, Niga(X) = de(X) — g1 (),

(X -t - (X &)

4(X)= Y

@ Can include spline basis in linear regression.

o Not always obvious how to choose the knots.

@ Natural splines can be used to avoid the erratic behavior of
polynomials beyond the knots.
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Phoneme recognition (cont.)

Logistic regression coeffcients, and smoothed version with natural cubic splines.

M
B(f) =" hunl£)6 = HO.
=

where H is a p x M matrix of spline functions.
Now, note that

XT3 = x"THo.

Letting 2* = H”x, we can therefore fit the logistic regression on
the smoothed inputs.
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Exampl recognition

Example: Phoneme Recognition (ESL, Example 5.2.3)

X=X(f)
f = frequency.
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15 examples each of the phonemes “aa” and “a0”

sampled from a total of 695 “aa”s and 1022 “ao"s.

Preprocessing data

@ In the previous example, we fitted a logistic regression to
transformed inputs.

@ Non-linear transformations are very useful for preprocessing
data

o Powerful method for improving the performance of 2 learning
algorithm.

o
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Smoothing splines Smoothing splines

o Splines can be very useful.

@ Problem: How to choose the knots in an optimal way?
o To compute a smoothing spline, we need to optimize on an

Smoothing splines avoid this problem . ! A
infinite dimensional space of functions.

Smoothing splines: Find a function f € C the minimizes
o Remarkably, it can be shown that the problem has an explicit,

- | | finite-dimensional, unique minimizer which is a natural cubic
— " e )
RSS(£.0) i= 3 (9 = f(i))* + *v/f @ dt (A>0). spline with knots at the unique values of the z; , i

1.....N.
= (See next homework)
o The penalty term translates to a penalty on the spline
@ First term controls closeness to data . .
coefficients, which are shrunk some of the way toward the
@ Second term controls curvature of the function linear fit
Note:
o If A = 0: any function that interpolates the data works.
@ As \ = oc: least squares fit.
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Equivalently,
e @
P = 11X =0) =

Before, we used a linear model for f, and chose the coefficients
using maximum likelihood.
Consider the penalized log-likelihood criterion:
, .
) = 3 logale) + (1~ ) og(1 — pa)] = 3 [ /0)

b
- £l . flxi) 1 1
=D [y (i) — log(1 + /=) — P GRS
b=
One can show that the optimal f is a natural spline with knots at

the unique ;5 (see ESL for more details).
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