Transforming data

- Very often the relationship between variables is not linear.
- We saw before that transformations of the features can be used.
- If $h_{m}: \mathbb{R}^{p} \rightarrow \mathbb{R}$, then we can use the model

$$
f(X)=\sum_{m=1}^{M} \beta_{m} h_{m}(X) .
$$

Common transformations:

- $h_{m}(X)=X_{m}$ (Usual linear regression).
- $h_{m}(X)=X_{j}^{2}$ or $h_{m}(X)=X_{j} X_{k}$ (Taylor polynomials).
- $h_{m}(X)=\log \left(X_{j}\right), \sqrt{X_{j}}$.
- $h_{m}(X)=I\left(L_{m} \leq X_{k}<U_{m}\right)$ (Indicator functions in some intervals).
Note:
- Need a large sample size to include many functions.
- Risk of over-fitting when including too many functions.

Splines

Splines are piecewise polynomials with a given number of continuous derivatives.

For example, cubic splines are degree 3 polynomials pasted together to get 2 continuous derivatives.

Splines (cont.)

More generally, given knots $t_{0}<t_{1}<\cdots<t_{k}$, a spline of degree n is a piecewise polynomial

$$
S(x):= \begin{cases}S_{0}(x) & t_{0} \leq x \leq t_{1} \\ S_{1}(x) & t_{1} \leq x \leq t_{2} \\ \vdots & \\ S_{k-1}(x) & t_{k-1} \leq x \leq t_{k}\end{cases}
$$

such that

- $S_{i}(x)$ is a polynomial of degree n.
- $S(x)$ is $n-1$ times continuously differentiable.
- Most commonly used value is $n=3$ (cubic splines)
- Said to be the smallest n for which it is impossible to detect the location of the knots by eye.
- A natural cubic spline imposes the supplementary conditions that the spline is linear beyond the boundary knots.

Cubic splines basis: With 2 knots ξ_{1}, ξ_{2} :

$$
\begin{array}{lc}
h_{1}(X)=1, & h_{3}(X)=X^{2}, \\
h_{5}(X)=\left(X-\xi_{1}\right)_{+}^{3} \\
h_{2}(X)=X, & h_{4}(X)=X^{3}, \\
h_{6}(X)=\left(X-\xi_{2}\right)_{+}^{3}
\end{array}
$$

More generally, with M knots, add $\left(X-\xi_{3}\right)_{+}^{3}, \ldots,\left(X-\xi_{M}\right)_{+}^{3}$.

Natural cubic splines basis: With M knots

$$
N_{1}(X)=1, \quad N_{2}(X)=X, \quad N_{k+2}(X)=d_{k}(X)-d_{M-1}(x),
$$

where

$$
d_{k}(X)=\frac{\left(X-\xi_{k}\right)_{+}^{3}-\left(X-\xi_{M}\right)_{+}^{3}}{\xi_{M}-\xi_{k}}
$$

- Can include spline basis in linear regression.
- Not always obvious how to choose the knots.
- Natural splines can be used to avoid the erratic behavior of polynomials beyond the knots.

Phoneme recognition (cont.)

Logistic regression coefficients, and smoothed version with natural cubic splines.

$$
\beta(f)=\sum_{i=1}^{M} h_{m}(f) \theta_{m}=\mathbf{H} \theta
$$

where \mathbf{H} is a $p \times M$ matrix of spline functions.
Now, note that

$$
X^{T} \beta=X^{T} \mathbf{H} \theta
$$

Letting $x^{*}=\mathbf{H}^{T} x$, we can therefore fit the logistic regression on the smoothed inputs.

Example: Phoneme Recognition (ESL, Example 5.2.3)

15 examples each of the phonemes " $a \mathrm{a}$ " and "ao" sampled from a total of 695 "aa"s and 1022 "ao"s.

Preprocessing data

- In the previous example, we fitted a logistic regression to transformed inputs.
- Non-linear transformations are very useful for preprocessing data.
- Powerful method for improving the performance of a learning algorithm.
- Splines can be very useful.
- Problem: How to choose the knots in an optima/ way?

Smoothing splines avoid this problem.
Smoothing splines: Find a function $f \in C^{2}$ the minimizes

$$
\operatorname{RSS}(f, \lambda):=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(t)^{2} d t \quad(\lambda>0)
$$

- First term controls closeness to data.
- Second term controls curvature of the function.

Note:

- If $\lambda=0$: any function that interpolates the data works.
- As $\lambda=\infty$: least squares fit.
- To compute a smoothing spline, we need to optimize on an infinite dimensional space of functions.
- Remarkably, it can be shown that the problem has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline with knots at the unique values of the $x_{i}, i=1, \ldots, N$. (See next homework).
- The penalty term translates to a penalty on the spline coefficients, which are shrunk some of the way toward the linear fit.

Nonparametric logistic regression

Consider the logistic regression problem with a binary output.

$$
\log \frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}=f(x)
$$

Equivalently,

$$
P(Y=1 \mid X=x)=\frac{e^{f(x)}}{1+e^{f(x)}}
$$

Before, we used a linear model for f, and chose the coefficients using maximum likelihood.
Consider the penalized log-likelihood criterion:

$$
\begin{aligned}
l(f ; \lambda) & =\sum_{i=1}^{n}\left[y_{i} \log p\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-p\left(x_{i}\right)\right)\right]-\frac{1}{2} \lambda \int f^{\prime \prime}(t) d t \\
& =\sum_{i=1}^{n}\left[y_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)\right]-\frac{1}{2} \lambda \int f^{\prime \prime}(t) d t
\end{aligned}
$$

One can show that the optimal f is a natural spline with knots at the unique $x_{i} \mathrm{~S}$ (see ESL for more details).

