Motivation

MATH 829: Introduction to Data Mining and Analysis
 Principal component analysis

Dominique Guillot
Departments of Mathematical Sciences University of Delavare

April 4, 2016

Principal component analysis (PCA)

- Let $X \in \mathbb{R}^{n \times p}$ with rows $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$. We think of X as n observations of a random vector $\left(X_{1}, \ldots, X_{p}\right) \in \mathbb{R}^{p}$.
- Suppose each column has mean 0, i.e., $\sum_{i=1}^{n} x_{i}=\mathbf{0}_{1 \times p}$.
- We want to find a linear combination $w_{1} X_{1}+\cdots+w_{p} X_{p}$ with maximum variance. (Intuition: we look for a direction in \mathbb{R}^{p} where the data varies the most.)
We solve:

$$
w=\underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n}\left(x_{i}^{T} w\right)^{2}
$$

(Note: $\sum_{i=1}^{n}\left(x_{i}^{T} w\right)^{2}$ is proportional to the sample variance of the data since we assume each column of X has mean 0 .)
Equivalently, we solve:

$$
w=\underset{\|w\|_{2}=1}{\operatorname{argmax}}(X w)^{T}(X w)=\underset{\|w\|_{2}=1}{\operatorname{argmax}} w^{T} X^{T} X w
$$

Claim: w is an eigenvector associated to the largest eigenvalue of $X^{T} X$.

- High-dimensional data often has a low-rank structure.
- Most of the "action" may occur in a subspace of \mathbb{R}^{p}.

Problem: How can we discover low dimensional structures in data?

- Principal components analysis: construct projections of the data that capture most of the variability in the data.
- Provides a low-rank approximation to the data.
- Can lead to a significant dimensionality reduction.

Proof of claim: Rayleigh quotients

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric (or Hermitian) matrix. The Rayleigh quotient is defined by

$$
R(A, x)=\frac{x^{T} A x}{x^{T} x}=\frac{\langle A x, x\rangle}{\langle x, x\rangle}, \quad\left(x \in \mathbb{R}^{p}, x \neq \mathbf{0}_{p \times 1}\right)
$$

Observations:
(1) If $A x=\lambda x$ with $\|x\|_{2}=1$, then $R(A, x)=\lambda$. Thus,

$$
\sup _{x \neq 0} R(A, x) \geq \lambda_{\max }(A)
$$

(9) Let $\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ denote the eigenvalues of A, and let $\left\{v_{1}, \ldots, v_{p}\right\} \subset \mathbb{R}^{p}$ be an orthonormal basis of eigenvectors of
A. If $x=\sum_{i=1}^{p} \theta_{i} v_{i}$, then $R(A, x)=\frac{\sum_{i=1}^{p} \lambda_{i} \theta_{i}^{2}}{\sum_{i=1}^{n} \theta_{i}^{2}}$.

It follows that

$$
\sup _{x \neq 0} R(A, x) \leq \lambda_{\max }(A)
$$

Thus, $\sup _{x \neq 0} R(A, x)=\sup _{\|x\|_{2}=1} x^{T} A x=\lambda_{\max }(A)$.

Back to PCA

Previous argument shows that

$$
w^{(1)}=\underset{\|w\|_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n}\left(x_{i}^{T} w\right)^{2}=\underset{\|w\|_{2}=1}{\operatorname{argmax}} w^{T} X^{T} X w
$$

is an eigenvector associated to the largest eigenvalue of $X^{T} X$.
First principal component:

- The linear combination $\sum_{i=1}^{p} w_{i}^{(1)} X_{i}$ is the first principal component of $\left(X_{1}, \ldots, X_{p}\right)$.
- Alternatively, we say that $X w^{(1)}$ is the first (sample) principal component of X.
- It is the linear combination of the columns of X having the "most variance".
Second principal component: We look for a new linear combination of the X_{i} 's that
- Is orthogonal to the first principal component, and
- Maximizes the variance.

PCA: summary

In summary, suppose

$$
X^{T} X=U \Lambda U^{T}
$$

where $U \in \mathbb{R}^{p \times p}$ is an orthogonal matrix and $\Lambda \in \mathbb{R}^{p \times p}$ is diagonal. (Eigendecomposition of $X^{T} X$.)

- Recall that the columns of U are the eigenvectors of $X^{T} X$ and the diagonal of Λ contains the eigenvalues of $X^{T} X$ (i.e., the singular values of X).
- Then the principal components of X are the columns of $X U$.
- Write $U=\left(u_{1}, \ldots, u_{p}\right)$. Then the variance of the i-th principal component is

$$
\left(X u_{i}\right)^{T}\left(X u_{i}\right)=u_{i}^{T} X^{T} X u_{i}=\left(U^{T} X^{T} X U\right)_{i i}=\Lambda_{i i} .
$$

Conclusion: The variance of the i-th principal component is the i-th eigenvalue of $X^{T} X$.

- We say that the first k PCs explain $\left(\sum_{i=1}^{k} \Lambda_{i i}\right) /\left(\sum_{i=1}^{p} \Lambda_{i i}\right) \times 100$ percent of the variance.

Back to PCA (cont.)

In other words:

$$
w^{(2)}:=\underset{\substack{\|w\|_{2}=1 \\ w \perp w^{(1)}}}{\operatorname{argmax}} \sum_{i=1}^{n}\left(x_{i}^{T} w\right)^{2}=\underset{\substack{\|w\|_{2}=1 \\ w \perp w^{(1)}}}{\operatorname{argmax}} w^{T} X^{T} X w .
$$

- Using a similar argument as before with Rayleigh quotients, we conclude that $w^{(2)}$ is an eigenvector associated to the second largest eigenvalue of $X^{T} X$.
- Similarly, given $w^{(1)}, \ldots, w^{(k)}$, we define

$$
w^{(k+1)}:=\underset{\substack{\|w\|_{2}=1 \\ w \perp w^{(1)}, w^{(2)}, \ldots, w^{(k)}}}{\operatorname{argmax}} \sum_{i=1}^{n}\left(x_{i}^{T} w\right)^{2}=\underset{\substack{\|w\|_{2}=1 \\ w \perp w^{(1)}, w^{(2)}, \ldots, w^{(k)}}}{\operatorname{argmax}} w^{T} X^{T} X w
$$

As before, the vector $w^{(k+1)}$ is an eigenvector associated to the $(k+1)$-th largest eigenvalue of $X^{T} X$.

Example: zip dataset

Recall the zip dataset:

- 9298 images of digits $0-9$.
- Each image is in black/white with $16 \times 16=256$ pixels.

We use PCA to project the data onto a 2 -dim subspace of \mathbb{R}^{256}.
from sklearn. ecomposition import PCA
pc $=$ PCA
$\mathrm{pc}=\mathrm{PCA}\left(\mathrm{n}_{-}\right.$components=10)
pc.fit(X_train)
print (pc.explained_variance_ratio_)
plt.plot(range(1,11), np.cumsum(pc.explained_variance_ratio_))

Example: zip dataset (cont.)

Projecting the data on the first two principal components: $\mathrm{Xt}=\mathrm{pc}$.fit_transform(X_train).

- Note: $\approx 27 \%$ variance explained by the first two PCAs.
- $\approx 90 \%$ variance explained by first 55 components.

Principal component regression

- PCAs can be directly used in a regression context.

Principal component regression: $y \in \mathbb{R}^{n \times 1}, X \in \mathbb{R}^{n \times p}$.

- Center y and each column of X (i.e., subtract mean from the columns)
- Compute the eigen-decomposition of $X^{T} X$:

$$
X^{T} X=U \Lambda U^{T}
$$

- Compute $k \geq 1$ principal components:

$$
W_{k}:=\left(X u_{1}, \ldots, X u_{k}\right)=X U_{k},
$$

where $U=\left(u_{1}, \ldots, u_{p}\right)$, and $U_{k}=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{p \times k}$.

- Regress y on the principal components:

$$
\hat{\gamma}_{k}:=\left(W_{k}^{T} W_{k}\right)^{-1} W_{k}^{T} y .
$$

- The PCR estimator is:

$$
\hat{\beta}_{k}:=U_{k} \hat{\gamma}_{k}, \quad \hat{y}^{(k)}:=X \hat{\beta}_{k}=X U_{k} \hat{\beta}_{k} .
$$

Note: k is a parameter that needs to be chosen (using CV or another method). Typically, one picks k to be significantly smaller than p.

Projection pursuit

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

Projection pursuit (PP):

- Set up a projection "index" to judge the merit of a particular one or two-dimensional projection of a given set of multivariate data.
- Use an optimization algorithm to find the global and local extrema of that projection index over all $1 / 2$-dimensional projections of the data.
Example:(Izenman, 2013) The absolute value of kurtosis, $\left|\kappa_{4}(Y)\right|$, of the one-dimensional projection $Y=w^{T} X$ has been widely used as a measure of non-Gaussianity of Y.
- Recall: The marginals of the multivariate Gaussian distribution are Gaussian.
- Can maximize/minimize the kurtosis to find subspaces where data looks Gaussian/non-Gaussian (e.g. to detect outliers).

