MATH 829: Introduction to Data Mining and Analysis Linear Regression: old and new (part 2)

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 17, 2017

The Gauss-Markov theorem

As before, we assume:

$$Y = X_1\beta_1 + \cdots + X_p\beta_p = X^T\beta_1$$

We observe $\mathbf{X} \in \mathbb{R}^{n imes p}, \, \mathbf{Y} \in \mathbb{R}^n.$ Then

$$\hat{\beta}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}.$$

Under some natural assumptions, we can show that $\hat{\beta}_{\text{LS}}$ is the best linear unbiased estimator for β .

Assumptions: $\mathbf{Y} = \mathbf{X}\beta + \epsilon$, where $\epsilon \in \mathbb{R}^n$ with:

- $E(\epsilon_i) = 0$
- O Var(ε_i) = σ² < ∞.</p>
- Ov(e_i, e_j) = 0 for all i ≠ j.

Note:

- (3) means that the errors are uncorrelated. In particular, (3) holds if the errors are independent.
- The errors need not be normal, nor independent, nor identically distributed.

2/24

Gauss-Markov (cont.)

Remarks: In our model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$,

- X is fixed.
- ∈ is random.
- Y is random.
- β is fixed, but unobservable.

We want to estimate β .

A *linear* estimator of β , is an estimator of the form $\hat{\beta} = C\mathbf{Y}$, where $C = (c_{ij}) \in \mathbb{R}^{p \times n}$ is a matrix, and

 $c_{ij} = c_{ij}(\mathbf{X}).$

Note: $\hat{\beta}$ is random since \mathbf{Y} is assumed to be random. In particular, $\hat{\beta}_{l.S} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ is a linear estimator with $C = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$.

An estimator is unbiased if $E(\hat{\beta}) = \beta$.

Gauss-Markov (cont.)

Ultimately, we want to use $\hat{\beta}$ to predict Y, i.e., $\hat{Y}_i = X_{i1}\hat{\beta}_1 + X_{i2}\hat{\beta}_2 + \cdots + X_{ip}\hat{\beta}_p.$ We want to control to error of the prediction.

We define the mean squared error (MSE) of a linear combination of the coefficients of $\hat{\beta}$ by

$$MSE(a^T \hat{\beta}) = E\left[\left(\sum_{i=1}^n a_i(\hat{\beta}_i - \beta_i)\right)^2\right] \quad (a \in \mathbb{R}^p)$$

Theorem (Gauss-Markov theorem)

Suppose $\mathbf{Y} = \mathbf{X}\beta + \epsilon$ where ϵ satisfies the previous assumptions. Let $\hat{\beta} = C\mathbf{Y}$ be a linear unbiased estimator of β . Then for all $a \in \mathbb{R}^p$.

 $MSE(a^T \hat{\beta}_{LS}) \leq MSE(a^T \hat{\beta}).$

We say that $\hat{\beta}_{\rm LS}$ is the best linear unbiased estimator (BLUE) of $\beta.$

1/14

The bias-variance tradeoff

Let $Z = a^T \beta$ and $\hat{Z} = a^T \hat{\beta}$. (Note: Z is non-random). Then

$$\begin{split} MSE(a^T\hat{\beta}) &= E\left[(a^T(\hat{\beta} - \beta))^2\right] = E\left[(\hat{Z} - Z)^2\right] \\ &= E(Z^2 - 2Z\hat{Z} + \hat{Z}^2) \\ &= E(Z^2) - 2E(Z\hat{Z}) + E(\hat{Z}^2) \\ &= Z^2 - 2ZE(\hat{Z}) + Var(\hat{Z}) + E(\hat{Z})^2 \\ &= \underbrace{(Z - E(\hat{Z}))^2 + Var(\hat{Z}) + C(\hat{Z})}_{byta^2} + \underbrace{Var(\hat{Z})}_{Var(\hat{Z})}. \end{split}$$

Therefore, MSE = Bias-squared + Variance. As a result, if $\hat{\beta}$ is unbiased, then $M SE(a^T \beta) = Var(\hat{Z})$.

Gauss-Markov (cont.)

We now prove the Gauss-Markov theorem. Using the bias variance decomposition of MSE, it suffices to show that for every unbiased estimator of β

$$Var(a^T \hat{\beta}_{LS}) \le Var(a^T \hat{\beta}) \quad \forall a \in \mathbb{R}^p.$$

Proof Let $\hat{\beta} = C\mathbf{Y}$ where $C = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T + D$ for some $D \in \mathbb{R}^{p \times n}$. We will compute $E(\hat{\beta})$ and $Var(a^T\hat{\beta})$.

$$E(\hat{\beta}) = E \left[((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + D) \mathbf{Y} \right]$$

= $E \left[((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + D) (\mathbf{X}\beta + \epsilon) \right]$
= $(I + D\mathbf{X})\beta.$

In order for $\hat{\beta}$ to be unbiased, we need $D\mathbf{X} = 0$. We now compute $Var(a^T \hat{\beta})$.

Gauss-Markov (cont.)

Recall

 $\operatorname{Var}(a^T \hat{\beta}) = a^T \Sigma a.$ where $\Sigma = (Cov(\hat{\beta}_i, \hat{\beta}_j)) = Var(\hat{\beta})$. More generally, if $A \in \mathbb{R}^{p \times p}$, then Vs

$$\operatorname{ar}(A\hat{\beta}) = A \operatorname{Var}(\hat{\beta})A^T$$

Using these formulas, we obtain

$$\begin{split} & \operatorname{Var}(\hat{\beta}) = \operatorname{Var}(C\mathbf{Y}) \\ & = C \operatorname{Var}(\mathbf{Y}) C^T = \sigma^2 C C^T \\ & = \sigma^2 ((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + D) ((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + D)^T \\ & = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \\ & + \sigma^2 \left[(\mathbf{X}^T \mathbf{X})^{-1} \sum_{\substack{(T) \\ = (D \mathbf{X})^T = 0}}^T \sum_{\substack{(T) \\ = 0}}^T \sum_{\substack{(T$$

Gauss-Markov

We have shown:

$$Var(\hat{\beta}) = \sigma^2 (X^T X)^{-1} + \sigma^2 D D^T.$$

Note that the matrices $(X^TX)^{-1}$ and DD^T are positive semidefinite

Therefore

$$\operatorname{Var}(a^T \hat{\beta}) = a^T (\sigma^2 (X^T X)^{-1} + \sigma^2 D D^T) a \ge a^T \sigma^2 (X^T X)^{-1} a$$

= $\operatorname{Var}(a^T \hat{\beta}_{LS}).$

This concludes the proof

\$/14

0/14

Back to bias-variance tradeoff

We saw that

$$MSE(a^T\hat{\beta}) = (a^T\beta - E(a^T\hat{\beta}))^2 + Var(a^T\hat{\beta})$$

Moreover, according to the Gauss-Markov theorem, for every unbiased estimator $\hat{\beta}$,

 $MSE(a^T \hat{\beta}_{LS}) = Var(a^T \hat{\beta}_{LS}) \le MSE(a^T \hat{\beta})$

Problems with least squares:

- Least squares estimates often have large variance, and can have low prediction accuracy (especially when working with small samples).
- Generally, all the regression coefficients β_i are nonzero, making the model hard to interpret. Often, we want to identify the relevant variables to get the "big picture".

We can often increase the prediction accuracy by sacrificing a little bit of bias to reduce the variance of the estimator.

We will later examine some useful alternatives to least squares.

9/14

Training error and test error

A natural way to improve least squares is to force some of the coefficients to be zero.

- Resulting estimator is biased, but can benefit from the bias-variance tradeoff.
- Model is easier to interpret.

Complexity of the model:

- A complex model that fits data very well will often make poor predictions. Overfitting.
- On the other hand, a very simple model may not capture the complexity of the data. Underfitting.

To test the ability of a model to predict new values:

- We split our data into 2 parts (training data and test data) as uniformly as possible. People often use 75% training, 25% test.
- We fit our model using the training data only. (This minimizes the training error).
- We use the fitted model to predict values of the test data and compute the test error.

10/14

Training error and test error (cont.)

Splitting data into training/test data:

In the case of least squares:

$$\hat{\beta} = (X_{\text{train}}^T X_{\text{train}})^{-1} X_{\text{train}}^T Y_{\text{train}}.$$

$$\hat{Y}_{\text{test}} = X_{\text{test}} \hat{\beta}.$$

$$\text{Test error:}$$

$$MSE_{test} = \frac{1}{n_2} \sum_{i=1}^{n_2} (\widehat{Y}_{test,i} - Y_{test,i})^2.$$

We choose a model that minimizes the test error.

Training error and test error (cont.)

Typical behavior of the test and training error, as model complexity is varied.

Training sets and test sets (Python)

Scikit-learn provides a function to split the data automatically for us.

```
from sklearn.cross_validation import train_test_split
```

```
# Split data into training and test sets
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.25,
random_state=42)
```

Fit model on training data lin_model = LinearRegression(fit_intercept=True) lin_model.fit(X_train.y_train)

Returns the coefficient of determination R^2. lin_model.score(X_test, y_test)

The coefficient of determination

 Regression models are often ranked using the coefficient of determination called "R squared" and denoted R².

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}.$$

- In some sense, the R² measures "how much better" is the prediction, compared to a constant prediction equal to the average of the y_is.
- The score method in sklearn returns the R^2 .
- ullet We want a model with a test R^2 as close to 1 as possible.

13/14