The Gauss-Markov theorem

MATH 829: Introduction to Data Mining and Analysis
 Linear Regression: old and new (part 2)

Dominique Guillot
Departments of Mathematical Sciences
University of Delaware

February 17, 2017

As before, we assume:

$$
Y=X_{1} \beta_{1}+\cdots+X_{p} \beta_{p}=X^{T} \beta
$$

We observe $\mathbf{X} \in \mathbb{R}^{n \times p}, \mathbf{Y} \in \mathbb{R}^{n}$. Then

$$
\hat{\beta}_{\mathrm{LS}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

Under some natural assumptions, we can show that $\hat{\beta}_{\mathrm{LS}}$ is the best linear unbiased estimator for β.
Assumptions: $\mathbf{Y}=\mathbf{X} \beta+\epsilon$, where $\epsilon \in \mathbb{R}^{n}$ with:
() $E\left(\epsilon_{i}\right)=0$.
(9) $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}<\infty$.
(3) $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0$ for all $i \neq j$.

Note:

- (3) means that the errors are uncorrelated. In particular, (3) holds if the errors are independent.
- The errors need not be normal, nor independent, nor identically distributed.

Gauss-Markov (cont.)

Remarks: In our model $\mathbf{Y}=\mathbf{X} \beta+\boldsymbol{\epsilon}$,

- \mathbf{X} is fixed.
- ϵ is random.
- \mathbf{Y} is random.
- β is fixed, but unobservable.

We want to estimate β.
A linear estimator of β, is an estimator of the form $\hat{\beta}=C \mathbf{Y}$, where $C=\left(c_{i j}\right) \in \mathbb{R}^{p \times n}$ is a matrix, and

$$
c_{i j}=c_{i j}(\mathbf{X})
$$

Note: $\hat{\beta}$ is random since \mathbf{Y} is assumed to be random.
In particular, $\hat{\beta}_{\mathrm{LS}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$ is a linear estimator with $C=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$.

An estimator is unbiased if $E(\hat{\beta})=\beta$.

Gauss-Markov (cont.)

Ultimately, we want to use $\hat{\beta}$ to predict Y, i.e.,
$\hat{Y}_{i}=X_{i 1} \hat{\beta}_{1}+X_{i 2} \hat{\beta}_{2}+\cdots+X_{i p} \hat{\beta}_{p}$.
We want to control to error of the prediction.
We define the mean squared error (MSE) of a linear combination of the coefficients of $\hat{\beta}$ by

$$
\operatorname{MSE}\left(a^{T} \hat{\beta}\right)=E\left[\left(\sum_{i=1}^{n} a_{i}\left(\hat{\beta}_{i}-\beta_{i}\right)\right)^{2}\right] \quad\left(a \in \mathbb{R}^{p}\right)
$$

Theorem (Gauss-Markov theorem)

Suppose $\mathbf{Y}=\mathbf{X} \beta+\epsilon$ where ϵ satisfies the previous assumptions. Let $\beta=C \mathbf{Y}$ be a linear unbiased estimator of β. Then for all $a \in \mathbb{R}^{p}$,

$$
\operatorname{MSE}\left(a^{T} \hat{\beta}_{L S}\right) \leq \operatorname{MSE}\left(a^{T} \hat{\beta}\right) .
$$

We say that $\hat{\beta}_{\mathrm{LS}}$ is the best linear unbiased estimator (BLUE) of β.

Gauss-Markov (cont.)

The bias-variance tradeoff

Let $Z=a^{T} \beta$ and $\hat{Z}=a^{T} \hat{\beta}$. (Note: Z is non-random). Then

$$
\begin{aligned}
\operatorname{MSE}\left(a^{T} \hat{\beta}\right) & =E\left[\left(a^{T}(\hat{\beta}-\beta)\right)^{2}\right]=E\left[(\hat{Z}-Z)^{2}\right] \\
& =E\left(Z^{2}-2 Z \hat{Z}+\hat{Z}^{2}\right) \\
& =E\left(Z^{2}\right)-2 E(Z \hat{Z})+E\left(\hat{Z}^{2}\right) \\
& =Z^{2}-2 Z E(\hat{Z})+\operatorname{Var}(\hat{Z})+E(\hat{Z})^{2} \\
& =\underbrace{(Z-E(\hat{Z}))^{2}}_{\text {bias }^{2}}+\underbrace{\operatorname{Var}(\hat{Z})}_{\text {variance }} .
\end{aligned}
$$

Therefore, MSE $=$ Bias-squared + Variance.
As a result, if $\hat{\beta}$ is unbiased, then $\operatorname{MSE}\left(a^{T} \beta\right)=\operatorname{Var}(\hat{Z})$.

Gauss-Markov (cont.)

We now prove the Gauss-Markov theorem. Using the bias-variance decomposition of MSE, it suffices to show that for every unbiased estimator of β,

$$
\operatorname{Var}\left(a^{T} \hat{\beta}_{\mathrm{LS}}\right) \leq \operatorname{Var}\left(a^{T} \hat{\beta}\right) \quad \forall a \in \mathbb{R}^{p} .
$$

Proof. Let $\hat{\beta}=C \mathbf{Y}$ where $C=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}+D$ for some $D \in \mathbb{R}^{p \times n}$. We will compute $E(\hat{\beta})$ and $\operatorname{Var}\left(a^{T} \hat{\beta}\right)$.

$$
\begin{aligned}
E(\hat{\beta}) & =E\left[\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}+D\right) \mathbf{Y}\right] \\
& =E\left[\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}+D\right)(\mathbf{X} \beta+\epsilon)\right] \\
& =(I+D \mathbf{X}) \beta .
\end{aligned}
$$

In order for $\hat{\beta}$ to be unbiased, we need $D \mathbf{X}=0$.
We now compute $\operatorname{Var}\left(a^{T} \hat{\beta}\right)$.

Gauss-Markov (cont.)

Recall:

$$
\operatorname{Var}\left(a^{T} \hat{\beta}\right)=a^{T} \Sigma a,
$$

where $\Sigma=\left(\operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)\right)=\operatorname{Var}(\hat{\beta})$. More generally, if $A \in \mathbb{R}^{p \times p}$, then

$$
\operatorname{Var}(A \hat{\beta})=A \operatorname{Var}(\hat{\beta}) A^{T}
$$

Using these formulas, we obtain

$$
\begin{aligned}
\operatorname{Var}(\hat{\beta}) & =\operatorname{Var}(C \mathbf{Y}) \\
& =C \operatorname{Var}(\mathbf{Y}) C^{T}=\sigma^{2} C C^{T} \\
& =\sigma^{2}\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}+D\right)\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}+D\right)^{T} \\
& =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \\
& +\sigma^{2}[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \underbrace{\mathbf{X}^{T} D^{T}}_{=(D X)^{T}=0}+\underbrace{D \mathbf{X}}_{=0}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}+D D^{T}] \\
& =\sigma^{2}\left[\left(X^{T} X\right)^{-1}+D D^{T}\right] .
\end{aligned}
$$

Gauss-Markov

We have shown:

$$
\operatorname{Var}(\hat{\beta})=\sigma^{2}\left(X^{T} X\right)^{-1}+\sigma^{2} D D^{T}
$$

Note that the matrices $\left(X^{T} X\right)^{-1}$ and $D D^{T}$ are positive semidefinite.
Therefore,

$$
\begin{aligned}
\operatorname{Var}\left(a^{T} \hat{\beta}\right)=a^{T}\left(\sigma^{2}\left(X^{T} X\right)^{-1}+\sigma^{2} D D^{T}\right) a & \geq a^{T} \sigma^{2}\left(X^{T} X\right)^{-1} a \\
& =\operatorname{Var}\left(a^{T} \hat{\beta}_{\mathrm{LS}}\right) .
\end{aligned}
$$

This concludes the proof.

Back to bias-variance tradeoff

We saw that

$$
\operatorname{MSE}\left(a^{T} \hat{\beta}\right)=\left(a^{T} \beta-E\left(a^{T} \hat{\beta}\right)\right)^{2}+\operatorname{Var}\left(a^{T} \hat{\beta}\right)
$$

Moreover, according to the Gauss-Markov theorem, for every unbiased estimator $\hat{\beta}$,

$$
\operatorname{MSE}\left(a^{T} \hat{\beta}_{\mathrm{LS}}\right)=\operatorname{Var}\left(a^{T} \hat{\beta}_{\mathrm{LS}}\right) \leq \operatorname{MSE}\left(a^{T} \hat{\beta}\right)
$$

Problems with least squares:

- Least squares estimates often have large variance, and can have low prediction accuracy (especially when working with small samples).
- Generally, all the regression coefficients β_{i} are nonzero, making the model hard to interpret. Often, we want to identify the relevant variables to get the "big picture".
We can often increase the prediction accuracy by sacrificing a little bit of bias to reduce the variance of the estimator.
We will later examine some useful alternatives to least squares.

Training error and test error

A natural way to improve least squares is to force some of the coefficients to be zero.

- Resulting estimator is biased, but can benefit from the bias-variance tradeoff.
- Model is easier to interpret.

Complexity of the model:

- A complex model that fits data very well will often make poor predictions. Overfitting.
- On the other hand, a very simple model may not capture the complexity of the data. Underfitting.
To test the ability of a model to predict new values:
- We split our data into 2 parts (training data and test data) as uniformly as possible. People often use 75% training, 25% test.
- We fit our model using the training data only. (This minimizes the training error).
- We use the fitted model to predict values of the test data and compute the test error

Training error and test error (cont.)

Splitting data into training/test data:

In the case of least squares:
(0) $\hat{\beta}=\left(X_{\text {train }}^{T} X_{\text {train }}\right)^{-1} X_{\text {train }}^{T} Y_{\text {train }}$.

- $\widehat{Y}_{\text {test }}=X_{\text {test }} \hat{\beta}$.
- Test error:

$$
\operatorname{MSE}_{\text {test }}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}}\left(\widehat{Y}_{\text {test }, i}-Y_{\text {test }, i}\right)^{2}
$$

We choose a model that minimizes the test error.

Training error and test error (cont.)

Typical behavior of the test and training error, as model complexity is varied.

Scikit-learn provides a function to split the data automatically for us.
from sklearn.cross_validation import train_test_split
\# Split data into training and test sets
X_train, X_test, y_train, y_test $=$
train_test_split(X, y, test_size $=0.25$,
random_state $=42$)
\# Fit model on training data
lin_model $=$ LinearRegression(fit_intercept=True)
lin_model.fit(X_train, y_train)
\# Returns the coefficient of determination R^2.
lin_model.score(X_test, y_test)
\# Split data into training and test sets
X_train, X_test, y_train, y_test $=$
train_test_split (X, y, test_size= 0.25 ,
random_state=42)
\# Fit model on training data
lin_model = LinearRegression(fit_intercept=True)
\# Returns the coefficient of determination $R^{\wedge} 2$.
lin_model.score(X_test, y_test)

- Regression models are often ranked using the coefficient of determination called "R squared" and denoted R^{2}.

$$
R^{2}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} .
$$

- In some sense, the R^{2} measures "how much better" is the prediction, compared to a constant prediction equal to the average of the $y_{i} s$.
- The score method in sklearn returns the R^{2}.
- We want a model with a test R^{2} as close to 1 as possible.

