MATH 829: Introduction to Data Mining and Analysis Neural networks I

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

April 11 2016

This let tare is taken on the OPED Litato full (Attach des also minerate atomics at al)

Neurons (cont.)

- Our brain learns by changing the strengths of the connections between neurons or by adding or removing such connections.
- As of today, relating brain networks to functions is still a very challenging problem, and a very active area of research.

Can we construct a universal learning machine/algorithm?

- Neural network models are inspired by neuroscience.
- Use multiple layers of neurons to represent data.
- Very popular in computer vision, natural language processing, and many other fields.
- Today, neural network models are often called deep learning.

Neurons

- Our brain contains about 86 billion neurons.
- Each neuron receives signals from other neurons via its many dendrites (input).
- Each neuron has a single axon (output).
- Neuron make on average 7,000 synantic connections.
- Signals are sent via an electrochemical process.
- When a neuron fires, it starts a chain reaction that propagates information.
- There are excitatory and inhibitory synapses.

See berman (2013) for more details.

2/1

Neural networks

Single neuron model:

Server OFED L Trans I

Input: x_1, x_2, x_3 (and +1 intercept).

Out put: $hW_b(x) = f(W^Tx) = f(W_1x_1 + W_2x_2 + W_3x_3 + b)$, where f is the sigmoid function:

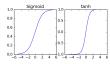
$$f(x) = \frac{1}{1 + e^{-x}}$$

Other common choice for f:

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

Neural networks (cont.)

The function f acts as an activation function.



Idea: Depending on the input of the neuron and the strength of the links, the neuron "fires" or not.

1/11

Notation

- $\mathbf{a}_{i} = \mathbf{n}_{i}$ min \mathbf{n}_{i} min \mathbf{n}_{i}
- ullet We denote the layers by L_1,\dots,L_{n_l} , so $L_1=$ input layer and $L_{n_l}=$ output layer.
- \bullet $W_{ij}^{(l)}=$ weight associated with the connection between unit j in layer l, and unit i in layer l+1. (Note the order of the indices.)
- $m{b}_i^{(l)}$ is the bias associated with unit i in layer l+1.

In above example: $(W,b)=(W^{(1)},b^{(1)},W^{(2)},b^{(2)})$. Here $W^{(1)}\in\mathbb{R}^{3\times3},W^{(2)}\in\mathbb{R}^{1\times3},b^{(1)}\in\mathbb{R}^3,b^{(2)}\in\mathbb{R}$.

Neural network models

A neural networks model is obtained by hooking together many neurons so that the output of one neuron becomes the input of another neuron.

Note: Each laver includes an intercept "+1" (or bias unit)

- Leftmost layer = input layer.
- Rightmost layer = output layer.
 Middle layers = hidden layers (not observed).
- We will let n_l denote the number of layers in our model ($n_l = 3$ in the above example).

Activation

- ullet We denote by $a_i^{(l)}$ the activation of unit i in layer l.
- We let $a_i^{(1)} = x_i$ (input).

We have:

have:
$$\begin{aligned} a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)}) \\ a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)}) \\ a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)}) \\ hw_2 &= a_1^{(1)} &= f(W_{13}^{(1)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}). \end{aligned}$$

/11

Compact notation

ullet In what follows, we will let $z_i^{(l)}=$ total weighted sum of inputs to unit i in layer l (including the bias term):

$$z_i^{(l)} := \sum_i W_{ij}^{(l-1)} a_j^{(l-1)} + b_i^{(l-1)}$$
 $(l \ge 2)$.

- \bullet Note that that $a_i^{(l)}=f(z_i^{(l)})$
- For example:

$$z_i^{(2)} = \sum_{i=1}^{3} W_{ij}^{(1)} x_j + b_i^{(1)}$$
 $i = 1, 2, 3.$

We extend f elementwise: $f([v_1,v_2,v_3])=[f(v_1),f(v_2),f(v_3)]$. Using the above notation, we have:

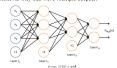
$$z^{(2)} = W^{(1)}x + b^{(1)}$$

 $a^{(2)} = f(z^{(2)})$
 $z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$
 $h_{Wb} = a^{(3)} = f(z^{(3)})$.

9/11

Multiple outputs

Neural networks may also have multiple outputs:



- ullet To train this network, we need observations $(x^{(i)},y^{(i)})$ with $y^{(i)}\in\mathbb{R}^2$
- Useful for applications where the output is multivariate
 (e.g. medical diagnosis application where output is whether or
 not a patient has a list of diseases)
- Useful to encode or compress information.

Forward propagation

The previous process is called the forward propagation step.

- Recall that we defined a⁽¹⁾ = x (the input).
- The forward propagation can therefore be written as:

$$z^{(l+1)} = W^{(l)}a^{(l)} + b^{(l)}$$

 $a^{(l+1)} = f(z^{(l+1)}).$

Using matrix-vector operations, we can take advantage of fast linear algebra routines to quickly perform calculations in our network.

- Can use different architectures (i.e., pattens of connectivity between neurons).
- . Typically, we use multiple densely connected layers.
- In that case, we obtain a feedforward neural network (no directed loops or cycles).

10/11

11/11