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Recall (cont.)

Vector form:

z(2) =W (1)x+ b(1)

a(2) = f(z(2))

z(3) =W (2)a(2) + b(2)

hW,b = a(3) = f(z(3)).
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Training neural networks

Suppose we have

A neural network with sl neurons in layer l (l = 1, . . . , nl).
Observations (x(1), y(1)), . . . , (x(m), y(m)) ∈ Rs1 × Rsnl .

We would like to choose W (l) and b(l) in some optimal way for all

l.

Let

J(W, b;x, y) :=
1

2
‖hW,b(x)−y‖22 (Squared error for one sample).

De�ne

J(W, b) :=
1

m
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λ

2
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(W
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ji )

2.

(average squared error with Ridge penalty).

Note:

The Ridge penalty prevents over�tting.

We do not penalize the bias terms b
(l)
i .

The loss function J(W, b) is not convex.
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Some remarks

The loss function J(W, b) is often used both for regression and

classi�cation.

In classi�cation problems, we choose the labels y ∈ {0, 1} (if
working with sigmoid) or y ∈ {−1, 1} (if working with tanh).

For regression problems, we scale the output so that y ∈ [0, 1]
(if working with sigmoid) or y ∈ [−1, 1] (if working with tanh).

We will use a gradient descent to minimize J(W, b). Note that

since the function is non-convex, we may only �nd a local

minimum.

We need an initial choice for W
(l)
ij and b

(l)
i . If we initialize all

the parameters to 0, then the parameters remain constant over

the layers because of the symmetry of the problem.

As a result, we initialize the parameters to a small constant at

random (say, using N(0, ε2) for ε = 0.01).

5/14

Gradient descent and the backpropagation algorithm

We update the parameters using a gradient descent as follows:
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Here α > 0 is a parameter (the learning rate).

Observe that:
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Therefore, it su�ces to compute the derivatives of

J(W, b;x(i), y(i)).
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Computing the derivatives using backpropagation

1 Compute the activations for all the layers.
2 For each output unit i in layer nl (output), compute

δ
(nl)
i :=

∂

∂z
(nl)
i

1

2
‖y − hW,b(x)‖22 = −(yi − a

(nl)
i ) · f ′(znl

i ).

3 For l = nl − 1, nl − 2, . . . , 2
For each node i in layer l, set

δ
(l)
i :=

sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

 · f ′(z(l)i ).

4 Compute the desired partial derivatives:

∂
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Autoencoders

An autoencoder learns the identity function:

Input: unlabeled data.

Output = input.

Idea: limit the number of hidden layers to discover structure in

the data.

Learn a compressed representation of the input.

Source: UFLDL tutorial.

Can also learn a sparse network by including supplementary

constraints on the weights.
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Example (UFLDL)

Train an autoencoder on 10× 10 images with one hidden layer.

Each hidden unit i computes:

a
(2)
i = f

 100∑
j=1

W
(1)
ij xj + b

(1)
j

 .

Think of a
(2)
i as some non-linear feature of the input x.

Problem: Find x that maximally activates a
(2)
i over ‖x‖2 ≤ 1.

Claim:

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij )2

.

(Hint: Use Cauchy�Schwarz).

We can now display the image maximizing a
(2)
i for each i.
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Example (cont.)

100 hidden units on 10x10 pixel inputs:

The di�erent hidden units have learned to detect edges at di�erent

positions and orientations in the image.
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Sparse neural networks

So far we discussed dense neural networks.

Dense networks have a lot of parameters to learn. Can be

ine�cient or impossible to train.

Sparse models have been proposed in the literature.

Some of these models �nd inspiration from how the early

visual system is wired up in biology.
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Using convolutions

Idea: Certain signals are stationary, i.e., their statistical

properties do not change in space or time.

For example, images often have similar statistical properties in

di�erent regions in space.

That suggests that the features that we learn at one part of an

image can also be applied to other parts of the image.

Can �convolve� the learned features with the larger image.

Example: 96× 96 image.

Learn features on small 8× 8 patches sampled randomly (e.g.

using a sparse autoencoder).

Run the trained model through all 8× 8 patches of the image

to get the feature activations.

Source: UFLDL tutorial. 12/14



Pooling features

Once can also pool the features obtained via convolution.

For example, to describe a large image, one natural approach

is to aggregate statistics of these features at various locations.

E.g. compute the mean, max, etc. over di�erent regions.

Can lead to more robust features. Can lead to invariant

features.

For example, if the pooling regions are contiguous, then the

pooling units will be �translation invariant�, i.e., they won't

change much if objects in the image are undergo a (small)

translation.
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Neural networks with scikit-learn

Need to install the 0.18-dev version

(http://scikit-learn.org/stable/developers/

contributing.html#retrieving-the-latest-code).

sklearn.neural_network.MLPClassifier

sklearn.neural_network.MLPRegressor
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