MATH 829: Introduction to Data Mining and

Analysis
Neural networks Il

Dominique Guillot

Departments of Mathematical Sciences
University of Delavare

April 13, 2016

“This lecture is based on the UFLDL tutorial (hitp://deeplearning stanford.edu/)

Recall (cont.)

Vector form:
20 = whg 4 p®

a® = j(z)
3) _ Wm“m + {‘\2)

hwp = a® = f(z).

I

= FW 21+ Was + Wy +5)
2 = fiD e+ Wiay + Wi a4 1)
= FWi a1+ Wiy s + Wi as +6)

= W Pa? + Wl + wial +).

218

Training neural networks

Suppose we have
o A neural network with s, neurons in layer I (I =1,....m).
o Observations (¢, yM),... (z(™,y(™M) € R% x R,
We would like to choose W) and b) in some optimal way for all
!
Let

J(W,biz,y) = %th s(@)—yl3 (Squared error for one sample).
Define

I T S,
J(W,b) = RE]:J(H'.I‘:T(),y + 3 IZ zz;m},‘f)l
= g

(average squared error with Ridge penalty)
Note:
@ The Ridge penalty prevents overfitting.
@ We do not penalize the bias terms b

o The loss function J(IV;,b) is not convex
e

Some remark:

o The loss function .J(IV,b) is often used both for regression and
classification

o In classification problems, we choose the labels y € {0, 1} (if
working with sigmoid) or y € {—1,1} (i working with tanh)

@ For regression problems, we scale the output so that i € [0, 1]
(if working with sigmoid) or y € [—1, 1] (if working with tanh).

@ We will use a gradient descent to minimize .J(W,b). Note that
since the function is non-convex, we may only find a local
minimum.

© We need an initial choice for W, and 1. If we initialize all
the parameters to 0, then the parameters remain constant over
the layers because of the symmetry of the problem.

@ As a result, we initialize the parameters to a small constant at
random (say, using N(0, ¢?) for € = 0.01)

s

omputing th

@ Compute the activations for all the layers.
@ For each output unit i in layer n; (output), compute

O3y = ba)B =~ — ™)).

PRmE

s

Q Forl=m—1m—2....2
For each nade i in layer I, set

50 = ”iu/(’r 0))

© Compute the desired partial derivatives

L”J(ur 20y =
ol

) 50+1)
J 0

9 7 e D) (i +
WJ(W. byl yd)) = 5+,

2

We update the parameters using a gradient descent as follows:

Wl ew? —a 0, J(W,b)
owl)
ol b — uiﬂj(nin).
)

Here o > 0 is a parameter (the learning rate)
Observe that:

a ; (1)
—Z_J(W.b) = LW,
oD i
oWl =

T T A

WJ(W!‘) = EE,:] WJ(IM

it suffices to compute the derivatives of
0

s

An autoencoder learns the identity function:
o Input: unlabeled data
@ Output = input.
@ Idea: limit the number of hidden layers to discover structure in
the data.
o Learn a compressed representation of the input.

Can also learn a sparse network by including supplementary
constraints on the weights

o

Example (UFLDL)

o Train an autoencoder on 10 x 10 images with one hidden layer.

@ Each hidden unit i computes:

100

=W
=

o Think of af?) as some non-linear feature of the input .
(2)

1 over [|zfls < 1.

Problem: Find = that maximally activates a,

Claim

W

(Hint: Use Cauchy-Schwarz).

We can now display the image maximizing a!*) for each i
o

Sparse neural networks

o So far we discussed dense neural networks.
o Dense networks have a lot of parameters to learn. Can be
inefficient or impossible to train.

@ Sparse models have been proposed in the literature

 Some of these models find inspiration from how the early
visual system is wired up in biology.

layer m+1 ()
layer m

layer m-1

1

The different hidden units have learned to detect edges at different
positions and orientations in the image.

1014

Using convolutions

o |dea: Certain signals are stationary, i.e., their statistical
properties do not change in space or time.

o For example, images often have similar statistical properties in
different regions in space.

@ That suggests that the features that we learn at one part of an
image can also be applied to other parts of the image.

@ Can “convolve” the learned features with the larger image.

Example: 96 x 96 image

o Learn features on small § x 8 patches sampled randomly (e.g
using a sparse autoencoder).

@ Run the trained model through all 8 x 8 patches of the image
to get the feature activations.

Convolved

FeAUre oy Lol word e

Pooling feat

@ Once can also pool the features obtained via convolution

o For example, to describe a large image, one natural approach
is to aggregate statistics of these features at various locations.

o E.g. compute the mean, max, etc. over different regions,

@ Can lead to more robust features. Can lead to invariant Need to install the 0.18-dev version
features. (http://scikit-learn.org/stable/developers/

o For example, if the pooling regions are contiguous, then the contributing.html#retrieving-the-latest-code)
pooling units will be “translation invariant”, i.e., they won't
change much if objects in the image are undergo a (small) o sklearn.neural_network.MLPClassifier
translation © sklearn.neural network.MLPRegressor

Convolved Pooled
feature feature

1/ e

http://scikit-learn.org/stable/developers/contributing.html#retrieving-the-latest-code
http://scikit-learn.org/stable/developers/contributing.html#retrieving-the-latest-code

