MATH 829: Introduction to Data Mining and Analysis
The EM algorithm (part 2)

Dominique Guillot
Departments of Mathematical Sciences
University of Delaware

April 20, 2016

Recall

We are given independent observations $\left(x^{(i)}, z^{(i)}\right)$ with missing values $z^{(i)}$.

- Let $\theta^{(0)}$ be an initial guess for θ.
- Given the current estimate $\theta^{(i)}$ of θ, compute

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(i)}\right) & :=E_{z \mid x ; \theta^{(i)}} \log p(x, z ; \theta) \\
& =\sum_{i=1}^{n} E_{z^{(i)} \mid x^{(i)} ; \theta^{(i)}}\left(\log p\left(x^{(i)}, z^{(i)} ; \theta\right)\right) \quad \text { (E step) }
\end{aligned}
$$

(In other words, we average the missing values according to their distribution after observing the observed values.)

- We then optimize $Q\left(\theta \mid \theta^{(i)}\right)$ with respect to θ :

$$
\theta^{(i+1)}:=\underset{\theta}{\operatorname{argmax}} Q\left(\theta \mid \theta^{(i)}\right) \quad \text { (M step). }
$$

Theorem: The sequence $\theta^{(i)}$ constructed by the EM algorithm satisfies:

$$
l\left(\theta^{(i+1)}\right) \geq l\left(\theta^{(i)}\right)
$$

Convergence of the EM algorithm - Jensen's inequality

Recall: if $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex and X is a random variable, then

$$
\phi(E(X)) \leq E(\phi(X))
$$

In other words, if μ is a probability measure on $\Omega, g: \Omega \rightarrow \mathbb{R}$, and $\phi: \Omega \rightarrow \mathbb{R}$ is convex, then

$$
\phi\left(\int_{\Omega} g d \mu\right) \leq \int_{\Omega} \phi \circ g d \mu
$$

Note:

- The inequality is reversed if ϕ is concave instead of convex.
- Equality holds iff g is constant or $\phi(x)=a x+b$.

Previously, to deal with missing values, our goal was to maximize

$$
\sum_{i=1}^{n} \log p\left(x^{(i)} ; \theta\right)=\sum_{i=1}^{n} \log \sum_{z^{(i)}} p\left(x^{(i)}, z^{(i)} ; \theta\right) .
$$

Let $Q_{i}(z)$ be any probability distribution for $z^{(i)}$, i.e.,
(-) $Q_{i}(z) \geq 0$

- $\sum_{z} Q_{i}(z)=1$.

Convergence of the EM algorithm (cont.)

Then, using Jensen's inequality:

$$
\begin{aligned}
l\left(\theta^{(i)}\right)=\sum_{i=1}^{n} \log p\left(x^{(i)} ; \theta\right) & =\sum_{i=1}^{n} \log \sum_{z^{(i)}} p\left(x^{(i)}, z^{(i)} ; \theta\right) \\
& =\sum_{i=1}^{n} \log \sum_{z^{(i)}} Q_{i}\left(z^{(i)}\right) \frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}\left(z^{(i)}\right)} \\
& \geq \sum_{i=1}^{n} \sum_{z^{(i)}} Q_{i}\left(z^{(i)}\right) \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}\left(z^{(i)}\right)}
\end{aligned}
$$

Thinking of the inner sum as an expectation with respect to the distribution Q_{i}, we have shown:

$$
\log p\left(x^{(i)} ; \theta\right) \geq E_{z^{(i)} \sim Q_{i}} \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}\left(z^{(i)}\right)}
$$

How can we choose Q_{i} to get the best lower bound possible?

Convergence of the EM algorithm (cont.)

At every iteration of the EM algorithm, we choose Q_{i} to make the inequality

$$
\log p\left(x^{(i)} ; \theta\right) \geq E_{z(i) \sim Q_{i}} \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}\left(z^{(i)}\right)}
$$

tight at our "current" estimate $\theta=\theta^{(i)}$.
By the equality case in Jensen's inequality,

$$
\log p\left(x^{(i)} ; \theta\right)=E_{z^{(i)} \sim Q_{i}} \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}\left(z^{(i)}\right)}
$$

if

$$
\frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}\left(z^{(i)}\right)}=c
$$

for all $z^{(i)}$. In other words: $Q_{i}\left(z^{(i)}\right) \propto p\left(x^{(i)}, z^{(i)} ; \theta\right)$.
Now, for Q_{i} to be a probability distribution, we need to choose:

$$
Q_{i}\left(z^{(i)}\right)=\frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{\sum_{z^{(i)}} p\left(x^{(i)}, z^{(i)} ; \theta\right)}=p\left(z^{(i)} \mid x^{(i)} ; \theta\right) .
$$

Convergence of the EM algorithm (cont.)

- The previous calculation motivates the E step

$$
E_{z \mid x ; \theta^{(i)}} \log p(x, z ; \theta)
$$

in the EM algorithm.

- We will now show that $l\left(\theta^{(i+1)}\right) \geq l\left(\theta^{(i)}\right)$.
- With our choice of $Q_{i}^{(t)}\left(z^{(i)}\right) \propto p\left(x^{(i)}, z^{(i)} ; \theta^{(t)}\right)$ at step t, we have:

$$
\begin{aligned}
l\left(\theta^{(t)}\right)=\sum_{i=1}^{n} \log p\left(x^{(i)} ; \theta^{(t)}\right) & =\sum_{i=1}^{n} \log \sum_{z^{(i)}} p\left(x^{(i)}, z^{(i)} ; \theta^{(t)}\right) \\
& =\sum_{i=1}^{n} \log \sum_{z^{(i)}} Q_{i}^{(t)}\left(z^{(i)}\right) \frac{p\left(x^{(i)}, z^{(i)} ; \theta^{(t)}\right)}{Q_{i}^{(t)}\left(z^{(i)}\right)} \\
& =\sum_{i=1}^{n} \sum_{z^{(i)}} Q_{i}^{(t)}\left(z^{(i)}\right) \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta^{(t)}\right)}{Q_{i}^{(t)}\left(z^{(i)}\right)} .
\end{aligned}
$$

Convergence of the EM algorithm (cont.)

Now,

$$
\begin{aligned}
l\left(\theta^{(t+1)}\right) & =\sum_{i=1}^{n} \sum_{z^{(i)}} Q_{i}^{(t+1)}\left(z^{(i)}\right) \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta^{(t+1)}\right)}{Q_{i}^{(t+1)}\left(z^{(i)}\right)} \\
& \geq \sum_{i=1}^{n} \sum_{z^{(i)}} Q_{i}^{(t)}\left(z^{(i)}\right) \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta^{(t+1)}\right)}{Q_{i}^{(t)}\left(z^{(i)}\right)} \\
& \geq \sum_{i=1}^{n} \sum_{z^{(i)}} Q_{i}^{(t)}\left(z^{(i)}\right) \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta^{(t)}\right)}{Q_{i}^{(t)}\left(z^{(i)}\right)} \\
& =l\left(\theta^{(t)}\right)
\end{aligned}
$$

- First inequality holds by Jensen's inequality (our choice of Q_{i} gives equality in Jensen, but the inequality holds for any probability distribution).
- The second inequality holds by definition of $\theta^{(t+1)}$:

$$
\theta^{(i+1)}:=\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{z^{(i)}} Q_{i}^{(t)}\left(z^{(i)}\right) \log \frac{p\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}^{(t)}\left(z^{(i)}\right)}
$$

Example - Univariate Gaussian

- We consider a simple example to illustrate the EM algorithm.
- Suppose $W \sim N\left(\mu, \sigma^{2}\right)$ with $\mu \in \mathbb{R}$ and $\sigma>0$.
- Suppose w_{i} was observed for $i=1, \ldots, m$ and w_{i} is missing for $i=m+1, \ldots, n$.
- Let $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$ be the Gaussian density.
- The likelihood function for $\theta=\left(\mu, \sigma^{2}\right)$ is given by

$$
\begin{aligned}
L(\theta)=\prod_{i=1}^{n} f\left(w_{i}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-\left(w_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
& =\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-\left(w_{i}-\mu\right)^{2}}{2 \sigma}} \times \prod_{i=m+1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-\left(w_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Marginalizing over the unobserved values, we get:

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} L(\theta) d w_{m+1} \ldots d w_{n}=\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-\left(w_{i}-\mu\right)^{2}}{2 \sigma}}
$$

Example - Univariate Gaussian (cont.)

Conclusion: The MLE for $\left(\mu, \sigma^{2}\right)$ is the usual MLE for the observed values:

$$
\hat{\mu}=\frac{1}{m} \sum_{i=1}^{m} w_{i}, \quad \hat{\sigma}^{2}=\frac{1}{m} \sum_{i=1}^{m} w_{i}^{2}-\hat{\mu}^{2} .
$$

We will now re-derive the same result using the EM algorithm. The log-likelihood function is:

$$
\begin{aligned}
l(\theta) & =\sum_{i=1}^{n}\left[-\frac{1}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}}\left(w_{i}-\mu\right)^{2}-\frac{1}{2} \log 2 \pi\right] \\
& =-\frac{n}{2} \log \sigma^{2}-\frac{n}{2} \log 2 \pi-\frac{1}{2 \sigma^{2}}\left[n \mu^{2}+\sum_{i=1}^{n} w_{i}^{2}-2 \mu \sum_{i=1}^{n} w_{i}\right]
\end{aligned}
$$

Remark: The likelihood is linear in $\sum_{i=1}^{n} w_{i}$ and $\sum_{i=1}^{n} w_{i}^{2}$.

Example - Univariate Gaussian (cont.)

- The E step of the EM algorithm at step t calculates:

$$
\begin{aligned}
& E\left(\sum_{i=1}^{n} w_{i} \mid w_{i}^{\mathrm{obs}} ; \theta^{(t)}\right)=\sum_{i=1}^{m} w_{i}+(n-m) \mu^{(t)} . \\
& E\left(\sum_{i=1}^{n} w_{i}^{2} \mid w_{i}^{\mathrm{obs}} ; \theta^{(t)}\right)=\sum_{i=1}^{m} w_{i}^{2}+(n-m)\left[\left(\mu^{(t)}\right)^{2}+\left(\sigma^{2}\right)^{(t)}\right] .
\end{aligned}
$$

Note: Replacing $\sum_{i=1}^{n} w_{i}$ and $\sum_{i=1}^{n} w_{i}^{2}$ in $l(\theta)$ by the above expressions, the resulting function has the same "functional form" as the usual log-likelihood.
We conclude that

$$
\begin{aligned}
\mu^{(t+1)} & =\frac{1}{n} \sum_{i=1}^{m} w_{i}+\frac{(n-m)}{n} \mu^{(t)}, \\
\left(\hat{\sigma}^{2}\right)^{(t+1)} & \left.=\frac{1}{n} \sum_{i=1}^{m} w_{i}^{2}+\frac{n-m}{n}\left(\mu^{(t)}\right)^{2}+\left(\sigma^{2}\right)^{(t)}\right)-\left(\mu^{(t+1)}\right)^{2} .
\end{aligned}
$$

Example - Univariate Gaussian (cont.)

Usually, one would iterate the following system until convergence:

$$
\begin{aligned}
\mu^{(t+1)} & =\frac{1}{n} \sum_{i=1}^{m} w_{i}+\frac{(n-m)}{n} \mu^{(t)}, \\
\left(\hat{\sigma}^{2}\right)^{(t+1)} & \left.=\frac{1}{n} \sum_{i=1}^{m} w_{i}^{2}+\frac{n-m}{n}\left(\mu^{(t)}\right)^{2}+\left(\sigma^{2}\right)^{(t)}\right)-\left(\mu^{(t+1)}\right)^{2} .
\end{aligned}
$$

In this simple case, we can directly compute the limit by letting $t \rightarrow \infty$ and solving:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{m} w_{i}+\frac{(n-m)}{n} \hat{\mu} \Rightarrow \hat{\mu}=\frac{1}{m} \sum_{i=1}^{m} w_{i},
$$

and

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{m} w_{i}^{2}+\frac{n-m}{n}\left(\hat{\mu}^{2}+\hat{\sigma}^{2}\right)-\hat{\mu}^{2} \quad \Rightarrow \quad \hat{\sigma}^{2}=\frac{1}{m} \sum_{i=1}^{m} w_{i}^{2}-\hat{\mu}^{2} .
$$

We obtain the same result as in the direct approach.

Example - summary

- Of course, one would not use the EM algorithm in the univariate

Gaussian case.

- The important point here is that
- The E step was equivalent to computing the conditional expectation of the sufficient statistics.
- The M step was equivalent to a MLE problem with complete data (often available in closed form).
The same phenomenon occurs when working with exponential family distributions:

$$
f(y \mid \theta)=b(y) \exp \left(\theta^{T} T(x)-a(\theta)\right),
$$

where

- θ is a vector of parameters;
- $T(y)$ is a vector of sufficient statistics,
- $a(\theta)$ is a normalization constant (the log partition function).

Includes: Gaussian, Bernoulli, binomial, multinomial, geometric, exponential, Poisson, Dirichlet, gamma, chi-square, etc..

Example - fitting mixture models

- The EM algorithm is also useful to fitting models where there is no missing data, but where some hidden parameters make the estimation difficult.
- A mixture model is a probability model with density

$$
f(x)=\sum_{i=1}^{K} p_{i} f_{i}(x)
$$

where $p_{i} \geq 0, \sum_{i=1}^{K} p_{i}=1$, and each f_{i} is a pdf.

- To sample from such a model:
- Choose a category C at random according to the distribution $\left\{p_{i}\right\}_{i=1}^{K}$.
- Choose $X \mid C=j \sim f_{j}$.
- The f_{i} are often taken from the same parametric family
(e.g. Gaussian), but don't have to.

Example - mixture of Gaussians

- Consider a mixture of p-dimensional Gaussian distributions with
- parameters $\left(\mu_{i}, \Sigma_{i}\right)_{i=1}^{K}$,
- mixing probabilities $\left(p_{i}\right)_{i=1}^{K} \subset[0,1], \sum_{i=1}^{K} p_{i}=1$.
- Consider a sample $\left(x_{i}\right)_{i=1}^{n} \subset \mathbb{R}^{p}$ from this model.
- The category from which each sample was obtained is

unobserved.

- The parameters of the model are $\theta:=\left\{\mu_{i}, \Sigma_{i}, p_{i}: i=1, \ldots, K\right\}$.

The density for that model is

$$
f(x)=\sum_{i=1}^{K} p_{i} \cdot \phi\left(x ; \mu_{i}, \Sigma_{i}\right),
$$

where $\phi(x ; \mu, \Sigma)$ denotes the Gaussian density with parameters (μ, Σ).

- The log-likelihood function is

$$
l(\theta)=\sum_{i=1}^{n} \log \sum_{j=1}^{K} p_{j} \cdot \phi\left(x_{i} ; \mu_{j}, \Sigma_{j}\right)
$$

Numerically optimizing $l(\theta)$ is known to be slow and unstable.

Example - mixture of Gaussians (cont.)

- The EM algorithm approach is simpler and faster.
- Suppose our observations are (x_{i}, c_{i}) where c_{i} is the (unobserved) category from which x_{i} was drawn.
- The log-likelihood function can be written as

$$
l(\theta)=\sum_{i=1}^{n} \log \sum_{j=1}^{K} \mathbf{1}_{\left\{C_{i}=j\right\}} p_{j} \phi\left(x_{i} ; \mu_{j}, \Sigma_{j}\right) .
$$

- Using Bayes' rule:

$$
\begin{aligned}
\pi_{i j}:=P\left(C_{i}=j \mid X_{i}=x_{i}\right) & =\frac{P\left(X_{i}=x_{i} \mid C_{i}=j\right) P\left(C_{i}=j\right)}{\left.\sum_{k=1}^{K} P\left(X_{i}=x_{i}\right) \mid C_{i}=k\right) P\left(C_{i}=k\right)} \\
& =\frac{p_{j} \phi\left(x_{i} ; \mu_{j}, \Sigma_{j}\right)}{\sum_{k=1}^{K} p_{k} \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)} .
\end{aligned}
$$

Example - mixture of Gaussians (cont.)

The EM algorithm for a mixture of Gaussians:

- E step: Compute the "membership probabilities" (or
"responsabilities')' using the current estimate of the parameters:

$$
\pi_{i j}^{(t)}=\frac{p_{j}^{(t)} \phi\left(x_{i} ; \mu_{j}^{(t)}, \Sigma_{j}^{(t)}\right)}{\sum_{k=1}^{K} p_{k}^{(t)} \phi\left(x_{i} ; \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)}
$$

- M step: Update parameters:

$$
\begin{aligned}
\mu_{j}^{(t+1)} & =\frac{1}{N_{j}} \sum_{i=1}^{n} \pi_{i j}^{(t)} x_{i} \\
\Sigma_{j}^{(t+1)} & =\frac{1}{N_{j}} \sum_{i=1}^{n} \pi_{i j}^{(t)}\left(x_{i}-\mu_{i}^{(t+1)}\right)\left(x_{i}-\mu_{i}^{(t+1)}\right)^{T} \\
p_{j}^{(t+1)} & =\frac{N_{k}}{n}
\end{aligned}
$$

where

$$
N_{k}=\sum_{i=1}^{n} \pi_{i k}^{(t)}
$$

