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Convergence of the EM algorithm - Jensen's inequality

Recall: if ¢ : R — R is convex and X s a random variable, then
S(E(X)) < B(6(X))

In other words, if 1 is a probability measure on ©, g : @ - R, and
©:Q— Ris convex, then

3 (/_r/dp) g/moydu.
o o

Q The inequality is reversed if ¢ is concave instead of convex.
@ Equality holds iff g is constant or 6(x) = ax + b
Previously, to deal with missing values, our goal was to maximize

ilugpu(”.l)) = ilogZp('l“’.z(‘).ﬂ).
= i

Note:

be any probability distribution for (", i.c.,
>

)
)
.0

e

We are given independent observations (x:()
values 2.
o Let 0 be an initial guess for 6.
@ Given the current estimate () of 0, compute
QUOI0Y) = E.ppgeo logp(z, z:0)

) with missing

=3 Eopwon (]ngn[r(” :"W)) (E step)
=

(In other words, we average the missing values according to their
distribution after observing the observed values.)
@ We then optimize Q(6]0")) with respect to

00 = argmax Q(6)6") (M step)
o
Theorem: The sequence §*) constructed by the EM algorithm

satisfies: 164D > 16Dy,
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Convergence of the EM algorithm (cont.)

Then, using Jensen's inequality:

109) = logp(a;0) = 3 log Y pa®,21;0)
= =

o

200), 20); )
> Qi) log P:20:0)
X3 D)

Thinking of the inner sum as an expectation with respect to the
distribution Q;, we have shown:

(a0, 2050
logp(a;6) > E.)_q,log I(Q(T))

How can we choose Qi to get the best lower bound possible?
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At every iteration of the EM algorithm, we choose (); to make the
inequality
p(a®, 20);0)

logp(a):6) > E o)

tight at our “current” estimate § = §(")
By the equality case in Jensen's inequality,

a2t

logp(z";0) = B, log eNEC)

QGO

for all z(). In other words: Q;(=*)) x p(aV, 2(9); )
Now, for Q; to be a probability distribution, we need to choose:
oD 200
S0 a0, 2050)

p(z[;0).

Q=)

s/16

g

1(64+D) ,ZZQ\M/ 20) Jog 2

i=1 20

=33 Qe) log%

=10
@), 200, 9))
> QY ()1 (
2 Z Q)
—1(0)

o First inequality holds by Jensen's inequality (our choice of Q;
gives equality in Jensen, but the inequality holds for any
probability distribution)

o The second inequality holds by definition of 6(+1):

06+ ﬂwmeZQ (200 og 22 2050).
Qi

i1 =0

(@)
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Convergence of the EM algorithm (cont.)

@ The previous calculation motivates the E step

o logp(, 2:0)
in the EM algorithm.

© We will now show that [(9(1)) > 1(61)

o With our choice of Q) (=) o p(x(), 2();6(1)) at step ¢, we
have

1(69)

Zu,gzpu“’ 0:9)

ol

3 logp(a;6)
=

fZlogZQE’N:“))’i’ k
=YY el ’7’('62, -

i=1 20

Example - Univariate Ga

an

@ We consider a simple example to illustrate the EM algorithm.
o Suppose W ~ N(1,02) with 1 € R and o > 0

o Suppose w; was observed for i = 1,.....,m and w; is missing for
i=m+1,..., n
o Let f(z) = S e the Gaussian density.

@ The Ilkehhuod nmmon for 6 = (1, 02) is given by
s —(wi—w?
L(0) = )
() 1:[] f(ws) H \/m e

V2ro

Marginalizing over the unobserved values, we get:

i=1

/ / L(0) dwyyy .. . dw, H\Fl
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Example - Univariate Gaussian (

Conclusion: The MLE for (s, 0?) is the usual MLE for the observed

values:

i=1 =1
We will now re-derive the same result using the EM algorithm
The log-likelihood function is:

1 1
0wy=y [771‘1@27‘ (:1,—/1)2—710g21r]
&2 2?2 2

n

v o2 — P log? 1 2 v
log o 75103277W|:/m +Z

Remark: The likelihood is linear in 7", w; and S, w?.
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Examp

Usually, one would iterate the following system until convergence:

1 (n—=m)
(t+1) _ ) (1)
« P 2 wi+ ———u'",

) = lzuf 4hom (D)2 4+ (02)®) — (ultD)2
n

In this simple case, we can directly compute the limit by letting
t— 00 and solving

B CEON o )
——Zu,\ = 17;2"-‘.

and
&= liwl‘#
n !

We obtain the same result as in the direct approach.

moy
@+ -i* =
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Example - Univariate Gaussian (cont.)

@ The E step of the EM algorithm at step ¢ calculates:
(Zu‘,\u"l” o )7211' (n—m)u®
ZuZ\u"b’ 00

Note: Replacing 3_/, w; and Y, w? in [(6) by the above
expressions, the resulting function has the same “functional form”
as the usual log-likelihood.

We conclude that

(1) _ (n=m)
) = =3 "y 4 ——p,
/ n >u n !

Zu' (n—m)[(p?)? + (6%)®

5 n=m, (o " N
NG o - (HO)2 £ (62)) = (D)2
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Example - summary

@ Of course, one would not use the EM algorithm in the univariate
Gaussian case.
@ The important point here is that
@ The E step was equivalent to computing the conditional
expectation of the sufficient statistics.
@ The M step was equivalent to a MLE problem with complete
data (often available in closed form)
The same phenomenon occurs when working with exponential
family distributions:
(410) = b(y) exp(0” T (z) — a(0)).
where
@ 0 is a vector of parameters;
o T(y) is a vector of sufficient statistics,
@ a(f) is a normalization constant (the log partition function).
Includes: Gaussian, Bernoulli, binomial, multinomial, geometric,
exponential, Poisson, Dirichlet, gamma, chi-square, etc
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Example - fitting mixture mo

@ The EM algorithm is also useful to fitting models where there is
no missing data, but where some hidden parameters make the
estimation difficult,

@ A mixture model is a probability model with density

where p; > 0, 35 p; = 1. and each f; is a pdf.
@ To sample from such a model:
@ Choose a category C' at random according to the distribution
i}
@ Choose X[C'=j ~ f;
@ The f; are often taken from the same parametric family
(e.g. Gaussian), but don’t have to.
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Example - mixture of Gaussians (cont.)

o The EM algorithm approach s simpler and faster.
o Suppose our observations are (1, c;) where ¢; is the
(unobserved) category from which ; was drawn.

o The log-likelihood function can be written as

WK
10) = 310 > Viemypioais 1y, 55)
= =

o Using Bayes’ rule

7y 1= P(Ci= jlXi = @) =

_ s T
S prdls i Sx)
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Example - mixture of Gaussians

o Consider a mixture of p-dimensional Gaussian distributions with
o parameters (11, ;)1 ,
© mixing probabilities (p;)X, < [0,1], Y5, pi =1
o Consider a sample (x;)7_, C R from this model
© The category from which each sample was obtained is
unobserved.
o The parameters of the model are 0 := {j1;, Sy, p; 1 = 1,
The density for that model is
K
F(@) =D pi- o i, T,
=
where ¢(x; 1, X) denotes the Gaussian density with parameters
(1. 3)
@ The log-likelihood function is

WK
10) =" log ¥ p; - dlwii 15, 55)
=

Numerically optimizing /() is known to be slow and unstable

Example - mixture of Gaussians (cont.)

The EM algorithm for a mixture of Gaussians:
o E step: Compute the “membership probabilities” (or
“responsabilities’)’ using the current estimate of the parameters:
(t ) it
w_ o, =)
OPYERRORSONS

Y

@ M step: Update parameters:

0
(i 1

i — u0) @ — pHT

where
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