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Recall

We are given independent observations (x(i), z(i)) with missing

values z(i).

Let θ(0) be an initial guess for θ.
Given the current estimate θ(i) of θ, compute

Q(θ|θ(i)) := Ez|x;θ(i) log p(x, z; θ)

=

n∑
i=1

Ez(i)|x(i);θ(i)

(
log p(x(i), z(i); θ)

)
(E step)

(In other words, we average the missing values according to their

distribution after observing the observed values.)

We then optimize Q(θ|θ(i)) with respect to θ:

θ(i+1) := argmax
θ

Q(θ|θ(i)) (M step).

Theorem: The sequence θ(i) constructed by the EM algorithm

satis�es:
l(θ(i+1)) ≥ l(θ(i)).
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Convergence of the EM algorithm - Jensen's inequality

Recall: if φ : R→ R is convex and X is a random variable, then

φ(E(X)) ≤ E(φ(X)).

In other words, if µ is a probability measure on Ω, g : Ω→ R, and
φ : Ω→ R is convex, then

φ

(∫
Ω
g dµ

)
≤
∫

Ω
φ ◦ g dµ.

Note:
1 The inequality is reversed if φ is concave instead of convex.
2 Equality holds i� g is constant or φ(x) = ax+ b.

Previously, to deal with missing values, our goal was to maximize
n∑
i=1

log p(x(i); θ) =

n∑
i=1

log
∑
z(i)

p(x(i), z(i); θ).

Let Qi(z) be any probability distribution for z(i), i.e.,
1 Qi(z) ≥ 0
2
∑

z Qi(z) = 1.
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Convergence of the EM algorithm (cont.)

Then, using Jensen's inequality:

l(θ(i)) =
n∑
i=1

log p(x(i); θ) =
n∑
i=1

log
∑
z(i)

p(x(i), z(i); θ)

=
n∑
i=1

log
∑
z(i)

Qi(z
(i))

p(x(i), z(i); θ)

Qi(z(i))

≥
n∑
i=1

∑
z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

Thinking of the inner sum as an expectation with respect to the

distribution Qi, we have shown:

log p(x(i); θ) ≥ Ez(i)∼Qi log
p(x(i), z(i); θ)

Qi(z(i))
.

How can we choose Qi to get the best lower bound possible?
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Convergence of the EM algorithm (cont.)

At every iteration of the EM algorithm, we choose Qi to make the

inequality

log p(x(i); θ) ≥ Ez(i)∼Qi log
p(x(i), z(i); θ)

Qi(z(i))
.

tight at our �current� estimate θ = θ(i).

By the equality case in Jensen's inequality,

log p(x(i); θ) = Ez(i)∼Qi log
p(x(i), z(i); θ)

Qi(z(i))

if
p(x(i), z(i); θ)

Qi(z(i))
= c

for all z(i). In other words: Qi(z
(i)) ∝ p(x(i), z(i); θ).

Now, for Qi to be a probability distribution, we need to choose:

Qi(z
(i)) =

p(x(i), z(i); θ)∑
z(i) p(x

(i), z(i); θ)
= p(z(i)|x(i); θ).
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Convergence of the EM algorithm (cont.)

The previous calculation motivates the E step

Ez|x;θ(i) log p(x, z; θ)

in the EM algorithm.

We will now show that l(θ(i+1)) ≥ l(θ(i)).

With our choice of Q
(t)
i (z(i)) ∝ p(x(i), z(i); θ(t)) at step t, we

have:

l(θ(t)) =
n∑
i=1

log p(x(i); θ(t)) =
n∑
i=1

log
∑
z(i)

p(x(i), z(i); θ(t))

=
n∑
i=1

log
∑
z(i)

Q
(t)
i (z(i))

p(x(i), z(i); θ(t))

Q
(t)
i (z(i))

=
n∑
i=1

∑
z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t))

Q
(t)
i (z(i))

.
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Convergence of the EM algorithm (cont.)

Now,

l(θ(t+1)) =
n∑
i=1

∑
z(i)

Q
(t+1)
i (z(i)) log

p(x(i), z(i); θ(t+1))

Q
(t+1)
i (z(i))

≥
n∑
i=1

∑
z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t+1))

Q
(t)
i (z(i))

≥
n∑
i=1

∑
z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t))

Q
(t)
i (z(i))

= l(θ(t)).

First inequality holds by Jensen's inequality (our choice of Qi
gives equality in Jensen, but the inequality holds for any

probability distribution).

The second inequality holds by de�nition of θ(t+1):

θ(i+1) := argmax
θ

n∑
i=1

∑
z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ)

Q
(t)
i (z(i))

.
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Example - Univariate Gaussian

We consider a simple example to illustrate the EM algorithm.

Suppose W ∼ N(µ, σ2) with µ ∈ R and σ > 0.

Suppose wi was observed for i = 1, . . . ,m and wi is missing for

i = m+ 1, . . . , n.

Let f(x) = 1√
2πσ

e
−(x−µ)2

2σ2 be the Gaussian density.

The likelihood function for θ = (µ, σ2) is given by

L(θ) =
n∏
i=1

f(wi) =
n∏
i=1

1√
2πσ

e
−(wi−µ)

2

2σ2

=
m∏
i=1

1√
2πσ

e
−(wi−µ)

2

2σ ×
n∏

i=m+1

1√
2πσ

e
−(wi−µ)

2

2σ2

Marginalizing over the unobserved values, we get:∫ ∞
−∞

. . .

∫ ∞
−∞

L(θ) dwm+1 . . . dwn =
m∏
i=1

1√
2πσ

e
−(wi−µ)

2

2σ .
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Example - Univariate Gaussian (cont.)

Conclusion: The MLE for (µ, σ2) is the usual MLE for the observed

values:

µ̂ =
1

m

m∑
i=1

wi, σ̂2 =
1

m

m∑
i=1

w2
i − µ̂2.

We will now re-derive the same result using the EM algorithm.

The log-likelihood function is:

l(θ) =
n∑
i=1

[
−1

2
log σ2 − 1

2σ2
(wi − µ)2 − 1

2
log 2π

]

= −n
2

log σ2 − n

2
log 2π − 1

2σ2

[
nµ2 +

n∑
i=1

w2
i − 2µ

n∑
i=1

wi

]

Remark: The likelihood is linear in
∑n

i=1wi and
∑n

i=1w
2
i .

9/16

Example - Univariate Gaussian (cont.)

The E step of the EM algorithm at step t calculates:

E(
n∑
i=1

wi|wobs

i ; θ(t)) =
m∑
i=1

wi + (n−m)µ(t).

E(
n∑
i=1

w2
i |wobs

i ; θ(t)) =
m∑
i=1

w2
i + (n−m)[(µ(t))2 + (σ2)(t)].

Note: Replacing
∑n

i=1wi and
∑n

i=1w
2
i in l(θ) by the above

expressions, the resulting function has the same �functional form�

as the usual log-likelihood.

We conclude that

µ(t+1) =
1

n

m∑
i=1

wi +
(n−m)

n
µ(t),

(σ̂2)(t+1) =
1

n

m∑
i=1

w2
i +

n−m
n

(µ(t))2 + (σ2)(t))− (µ(t+1))2.
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Example - Univariate Gaussian (cont.)

Usually, one would iterate the following system until convergence:

µ(t+1) =
1

n

m∑
i=1

wi +
(n−m)

n
µ(t),

(σ̂2)(t+1) =
1

n

m∑
i=1

w2
i +

n−m
n

(µ(t))2 + (σ2)(t))− (µ(t+1))2.

In this simple case, we can directly compute the limit by letting

t→∞ and solving:

µ̂ =
1

n

m∑
i=1

wi +
(n−m)

n
µ̂ ⇒ µ̂ =

1

m

m∑
i=1

wi,

and

σ̂2 =
1

n

m∑
i=1

w2
i +

n−m
n

(µ̂2 + σ̂2)−µ̂2 ⇒ σ̂2 =
1

m

m∑
i=1

w2
i −µ̂2.

We obtain the same result as in the direct approach.
11/16

Example - summary

Of course, one would not use the EM algorithm in the univariate

Gaussian case.

The important point here is that
1 The E step was equivalent to computing the conditional

expectation of the su�cient statistics.
2 The M step was equivalent to a MLE problem with complete

data (often available in closed form).

The same phenomenon occurs when working with exponential

family distributions:

f(y|θ) = b(y) exp(θTT (x)− a(θ)),

where

θ is a vector of parameters;

T (y) is a vector of su�cient statistics;

a(θ) is a normalization constant (the log partition function).

Includes: Gaussian, Bernoulli, binomial, multinomial, geometric,

exponential, Poisson, Dirichlet, gamma, chi-square, etc..
12/16



Example - �tting mixture models

The EM algorithm is also useful to �tting models where there is

no missing data, but where some hidden parameters make the

estimation di�cult.

A mixture model is a probability model with density

f(x) =
K∑
i=1

pifi(x),

where pi ≥ 0,
∑K

i=1 pi = 1, and each fi is a pdf.

To sample from such a model:

1 Choose a category C at random according to the distribution

{pi}Ki=1.

2 Choose X|C = j ∼ fj .
The fi are often taken from the same parametric family

(e.g. Gaussian), but don't have to.
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Example - mixture of Gaussians

Consider a mixture of p-dimensional Gaussian distributions with

parameters (µi,Σi)
K
i=1,

mixing probabilities (pi)
K
i=1 ⊂ [0, 1],

∑K
i=1 pi = 1.

Consider a sample (xi)
n
i=1 ⊂ Rp from this model.

The category from which each sample was obtained is

unobserved.

The parameters of the model are θ := {µi,Σi, pi : i = 1, . . . ,K}.
The density for that model is

f(x) =
K∑
i=1

pi · φ(x;µi,Σi),

where φ(x;µ,Σ) denotes the Gaussian density with parameters

(µ,Σ).

The log-likelihood function is

l(θ) =

n∑
i=1

log

K∑
j=1

pj · φ(xi;µj ,Σj)

Numerically optimizing l(θ) is known to be slow and unstable. 14/16

Example - mixture of Gaussians (cont.)

The EM algorithm approach is simpler and faster.

Suppose our observations are (xi, ci) where ci is the
(unobserved) category from which xi was drawn.
The log-likelihood function can be written as

l(θ) =
n∑
i=1

log
K∑
j=1

1{Ci=j}pjφ(xi;µj ,Σj).

Using Bayes' rule:

πij := P (Ci = j|Xi = xi) =
P (Xi = xi|Ci = j)P (Ci = j)∑K

k=1 P (Xi = xi)|Ci = k)P (Ci = k)

=
pjφ(xi;µj ,Σj)∑K
k=1 pkφ(xi;µk,Σk)

.
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Example - mixture of Gaussians (cont.)

The EM algorithm for a mixture of Gaussians:

E step: Compute the �membership probabilities� (or

�responsabilities')' using the current estimate of the parameters:

π
(t)
ij =

p
(t)
j φ(xi;µ

(t)
j ,Σ

(t)
j )∑K

k=1 p
(t)
k φ(xi;µ

(t)
k ,Σ

(t)
k )

.

M step: Update parameters:

µ
(t+1)
j =

1

Nj

n∑
i=1

π
(t)
ij xi

Σ
(t+1)
j =

1

Nj

n∑
i=1

π
(t)
ij (xi − µ(t+1)

i )(xi − µ(t+1)
i )T

p
(t+1)
j =

Nk

n
,

where
Nk =

n∑
i=1

π
(t)
ik .
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