MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

April 20, 2016

Recall

We are given independent observations $(x^{(i)}, z^{(i)})$ with missing values $z^{(i)}$.

- Let $\theta^{(0)}$ be an initial guess for θ .
- ${\bf \bullet}$ Given the current estimate $\theta^{(i)}$ of $\theta,$ compute

$$P(\theta|\theta^{(i)}) := E_{z|x;\theta^{(i)}} \log p(x, z; \theta)$$

$$= \sum_{i=1}^{} E_{z^{(i)}|x^{(i)};\theta^{(i)}} \left(\log p(x^{(i)}, z^{(i)}; \theta) \right) \quad (E \text{ step})$$

(In other words, we average the missing values according to their distribution after observing the observed values.)

• We then optimize $Q(\theta|\theta^{(i)})$ with respect to θ :

$$\theta^{(i+1)} := \operatorname{argmax} Q(\theta|\theta^{(i)})$$
 (M step).

Theorem: The sequence $\theta^{(i)}$ constructed by the EM algorithm satisfies: $l(\theta^{(i+1)}) > l(\theta^{(i)}).$

1/16

Convergence of the EM algorithm - Jensen's inequality

Recall: if $\phi:\mathbb{R}\to\mathbb{R}$ is convex and X is a random variable, then

$$\phi(E(X)) \le E(\phi(X)).$$

In other words, if μ is a probability measure on $\Omega,\,g:\Omega\to\mathbb{R},$ and $\phi:\Omega\to\mathbb{R}$ is convex, then

$$\phi\left(\int_{\Omega} g \ d\mu\right) \leq \int_{\Omega} \phi \circ g \ d\mu.$$

Note:

. The inequality is reversed if ϕ is concave instead of convex.

• Equality holds iff g is constant or $\phi(x) = ax + b$.

Previously, to deal with missing values, our goal was to maximize

$$\sum_{i=1}^{n} \log p(x^{(i)}; \theta) = \sum_{i=1}^{n} \log \sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta)$$

Let $Q_i(z)$ be any probability distribution for $z^{(i)}$, i.e.,

ⓐ $Q_i(z) ≥ 0$ ⓐ $\sum_{z} Q_i(z) = 1.$

Convergence of the EM algorithm (cont.)

Then, using Jensen's inequality:

$$\begin{split} l(\theta^{(i)}) &= \sum_{i=1}^{n} \log p(x^{(i)}; \theta) = \sum_{i=1}^{n} \log \sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta) \\ &= \sum_{i=1}^{n} \log \sum_{z^{(i)}} Q_i(z^{(i)}) \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})} \\ &\geq \sum_{i=1}^{n} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})} \end{split}$$

Thinking of the inner sum as an expectation with respect to the distribution Q_i , we have shown:

$$\log p(x^{(i)}; \theta) \ge E_{z^{(i)} \sim Q_i} \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

How can we choose Q_i to get the best lower bound possible?

2/16

At every iteration of the EM algorithm, we choose Q_i to make the inequality

$$\log p(x^{(i)}; \theta) \ge E_{z^{(i)} \sim Q_i} \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

tight at our "current" estimate $\theta = \theta^{(i)}$.

By the equality case in Jensen's inequality,

 $\log p(x^{(i)}; \theta) = E_{z^{(i)} \sim Q_i} \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$

if

$$\frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})} = c$$

for all $z^{(i)}$. In other words: $Q_i(z^{(i)}) \propto p(x^{(i)}, z^{(i)}; \theta)$. Now, for Q_i to be a probability distribution, we need to choose:

$$Q_i(z^{(i)}) = \frac{p(x^{(i)}, z^{(i)}; \theta)}{\sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta)} = p(z^{(i)}|x^{(i)}; \theta).$$

\$/10

Convergence of the EM algorithm (cont.)

Now,

$$\begin{split} l(\theta^{(i+1)}) &= \sum_{i=1}^{n} \sum_{z(0)} Q_{i}^{(i+1)}(z^{(i)}) \log \frac{p(z^{(i)}, z^{(i)}, \theta^{(i+1)})}{Q_{i}^{(i+1)}(z^{(i)})} \\ &\geq \sum_{i=1}^{n} \sum_{z(0)} Q_{i}^{(i)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}, \theta^{(i+1)})}{Q_{i}^{(i)}(z^{(i)})} \\ &\geq \sum_{i=1}^{n} \sum_{z(0)} Q_{i}^{(i)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}, \theta^{(i)})}{Q_{i}^{(i)}(z^{(i)})} \\ &= l(\theta^{(i)}) \end{split}$$

- First inequality holds by Jensen's inequality (our choice of Q_i gives equality in Jensen, but the inequality holds for any probability distribution).
- \bullet The second inequality holds by definition of $\theta^{(t+1)}$:

$$\theta^{(i+1)} := \operatorname*{argmax}_{\theta} \sum_{i=1}^n \sum_{z^{(i)}} Q_i^{(t)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i^{(t)}(z^{(i)})}.$$

Convergence of the EM algorithm (cont.)

• The previous calculation motivates the E step

$$E_{z|x;\theta^{(i)}} \log p(x, z; \theta)$$

in the EM algorithm.

• We will now show that $l(\theta^{(i+1)}) \ge l(\theta^{(i)})$

 \bullet With our choice of $Q_i^{(t)}(z^{(i)}) \propto p(x^{(i)},z^{(i)};\theta^{(t)})$ at step t, we have:

$$\begin{split} (\theta^{(i)}) &= \sum_{i=1}^{n} \log p(x^{(i)};\theta^{(i)}) = \sum_{i=1}^{n} \log \sum_{z^{(i)}} p(x^{(i)},z^{(i)};\theta^{(i)}) \\ &= \sum_{i=1}^{n} \log \sum_{z^{(i)}} Q_i^{(i)}(z^{(i)}) \frac{p(x^{(i)},z^{(i)};\theta^{(i)})}{Q_i^{(i)}(z^{(i)})} \\ &= \sum_{i=1}^{n} \sum_{z^{(i)}} Q_i^{(i)}(z^{(i)}) \log \frac{p(x^{(i)},z^{(i)};\theta^{(i)})}{Q_i^{(i)}(z^{(i)})}. \end{split}$$

0/10

Example - Univariate Gaussian

- . We consider a simple example to illustrate the EM algorithm.
- Suppose $W \sim N(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma > 0$.
- ${\bullet}$ Suppose w_i was observed for $i=1,\ldots,m$ and w_i is missing for $i=m+1,\ldots,n.$
- \bullet Let $f(x)=\frac{1}{\sqrt{2\pi\sigma}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ be the Gaussian density.
- \bullet The likelihood function for $\theta=(\mu,\sigma^2)$ is given by

$$\begin{split} L(\theta) &= \prod_{i=1}^{n} f(w_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(w_i-\mu)^2}{2\sigma^2}} \\ &= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(w_i-\mu)^2}{2\sigma}} \times \prod_{i=m+1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(w_i-\mu)^2}{2\sigma^2}} \end{split}$$

Marginalizing over the unobserved values, we get:

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} L(\theta) \ dw_{m+1} \dots dw_n = \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(w_i-\mu)^2}{2\sigma}}.$$

Example - Univariate Gaussian (cont.)

Conclusion: The MLE for (μ,σ^2) is the usual MLE for the observed values:

$$\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} w_i, \quad \hat{\sigma}^2 = \frac{1}{m} \sum_{i=1}^{m} w_i^2 - \hat{\mu}^2.$$

We will now re-derive the same result using the EM algorithm. The log-likelihood function is:

$$\begin{split} l(\theta) &= \sum_{i=1}^{n} \left[-\frac{1}{2} \log \sigma^2 - \frac{1}{2\sigma^2} (w_i - \mu)^2 - \frac{1}{2} \log 2\pi \right] \\ &= -\frac{n}{2} \log \sigma^2 - \frac{n}{2} \log 2\pi - \frac{1}{2\sigma^2} \left[n\mu^2 + \sum_{i=1}^{n} w_i^2 - 2\mu \sum_{i=1}^{n} w_i \right] \end{split}$$

Remark: The likelihood is linear in $\sum_{i=1}^{n} w_i$ and $\sum_{i=1}^{n} w_i^2$

9/16

Example - Univariate Gaussian (cont.)

Usually, one would iterate the following system until convergence:

$$\mu^{(t+1)} = \frac{1}{n} \sum_{i=1}^{m} w_i + \frac{(n-m)}{n} \mu^{(t)},$$

$$(\hat{\sigma}^2)^{(t+1)} = \frac{1}{n} \sum_{i=1}^{m} w_i^2 + \frac{n-m}{n} (\mu^{(t)})^2 + (\sigma^2)^{(t)}) - (\mu^{(t+1)})^2$$

In this simple case, we can directly compute the limit by letting $t \to \infty$ and solving:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{m} w_i + \frac{(n-m)}{n} \hat{\mu} \Rightarrow \hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} w_i$$

and

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^m w_i^2 + \frac{n-m}{n} (\hat{\mu}^2 + \hat{\sigma}^2) - \hat{\mu}^2 \quad \Rightarrow \quad \hat{\sigma}^2 = \frac{1}{m} \sum_{i=1}^m w_i^2 - \hat{\mu}^2$$

We obtain the same result as in the direct approach.

Example - Univariate Gaussian (cont.)

• The E step of the EM algorithm at step t calculates:

$$\begin{split} & E(\sum_{i=1}^{n} w_i | w_i^{\text{obs}}; \theta^{(t)}) = \sum_{i=1}^{m} w_i + (n-m) \mu^{(t)}. \\ & E(\sum_{i=1}^{n} w_i^2 | w_i^{\text{obs}}; \theta^{(t)}) = \sum_{i=1}^{m} w_i^2 + (n-m) [(\mu^{(t)})^2 + (\sigma^2)^{(t)}] \end{split}$$

Note: Replacing $\sum_{i=1}^n w_i$ and $\sum_{i=1}^n w_i^2$ in $l(\theta)$ by the above expressions, the resulting function has the same "functional form" as the usual log-likelihood.

We conclude that

$$\begin{split} \mu^{(t+1)} &= \frac{1}{n} \sum_{i=1}^{m} w_i + \frac{(n-m)}{n} \mu^{(t)}, \\ (\hat{\sigma}^2)^{(t+1)} &= \frac{1}{n} \sum_{i=1}^{m} w_i^2 + \frac{n-m}{n} (\mu^{(t)})^2 + (\sigma^2)^{(t)}) - (\mu^{(t+1)})^2. \end{split}$$

10/16

Example - summary

 Of course, one would not use the EM algorithm in the univariate Gaussian case.

- The important point here is that
- The E step was equivalent to computing the conditional expectation of the sufficient statistics.
- The M step was equivalent to a MLE problem with complete data (often available in closed form).

The same phenomenon occurs when working with *exponential* family distributions:

$$f(y|\theta) = b(y) \exp(\theta^T T(x) - a(\theta)),$$

where

• θ is a vector of parameters;

T(y) is a vector of sufficient statistics;

• $a(\theta)$ is a normalization constant (the log partition function). Includes: Gaussian, Bernoulli, binomial, multinomial, geometric, exponential, Poisson, Dirichlet, gamma, chisquare, etc..

Example - fitting mixture models

- The EM algorithm is also useful to fitting models where there is no missing data, but where some hidden parameters make the estimation difficult
- A mixture model is a probability model with density

$$f(x) = \sum_{i=1}^{K} p_i f_i(x)$$

where $p_i \ge 0$, $\sum_{i=1}^{K} p_i = 1$, and each f_i is a pdf.

To sample from such a model:

- Choose a category C at random according to the distribution $\{p_i\}_{i=1}^K$
- Choose $X|C = i \sim f_i$.

• The f_i are often taken from the same parametric family (e.g. Gaussian), but don't have to.

13/16

Example - mixture of Gaussians

- Consider a mixture of p-dimensional Gaussian distributions with parameters (μ_i, Σ_i)^K_{i=1}
- mixing probabilities $(p_i)_{i=1}^K \subset [0, 1]$. $\sum_{i=1}^K p_i = 1$. Consider a sample $(x_i)_{i=1}^K \subset \mathbb{R}^p$ from this model.
- The category from which each sample was obtained is

u no bse rve d

• The parameters of the model are θ := {μ_i, Σ_i, p_i : i = 1,...,K}. The density for that model is

$$f(x) = \sum_{i=1}^{K} p_i \cdot \phi(x; \mu_i, \Sigma_i)$$

where $\phi(x; \mu, \Sigma)$ denotes the Gaussian density with parameters (μ, Σ)

The log-likelihood function is

$$l(\theta) = \sum_{i=1}^{n} \log \sum_{j=1}^{K} p_j \cdot \phi(x_i; \mu_j, \Sigma_j)$$

Numerically optimizing $l(\theta)$ is known to be slow and unstable.

14/10

Example - mixture of Gaussians (cont.)

- The EM algorithm approach is simpler and faster.
- Suppose our observations are (x_i, c_i) where c_i is the
- (unobserved) category from which x_i was drawn.
- The log-likelihood function can be written as

$$l(\theta) = \sum_{i=1}^{n} \log \sum_{j=1}^{K} \mathbf{1}_{\{C_i=j\}} p_j \phi(x_i; \mu_j, \Sigma_j).$$

• Using Bayes' rule:

$$\begin{split} \pi_{ij} &:= P(C_i = j | X_i = x_i) = \frac{P(X_i = x_i | C_i = j) P(C_i = j)}{\sum_{k=1}^{K} P(X_i = x_i) | C_i = k) P(C_i = k)} \\ &= \frac{p_j \phi(x_i; \mu_j, \Sigma_j)}{\sum_{k=1}^{K} p_k \phi(x_i; \mu_k, \Sigma_k)}. \end{split}$$

Example - mixture of Gaussians (cont.)

The EM algorithm for a mixture of Gaussians: • E step: Compute the "membership probabilities" (or "responsabilities")' using the current estimate of the parameters:

$$\pi_{ij}^{(t)} = \frac{p_j^{(t)}\phi(x_i; \mu_j^{(t)}, \Sigma_j^{(t)})}{\sum_{k=1}^{K} p_k^{(t)}\phi(x_i; \mu_k^{(t)}, \Sigma_k^{(t)})}$$

M step: Update parameters:

$$\begin{split} \mu_{j}^{(t+1)} &= \frac{1}{N_{j}} \sum_{i=1}^{n} \pi_{ij}^{(t)} x_{i} \\ \Sigma_{j}^{(t+1)} &= \frac{1}{N_{j}} \sum_{i=1}^{n} \pi_{ij}^{(t)} (x_{i} - \mu_{i}^{(t+1)}) (x_{i} - \mu_{i}^{(t+1)})^{T} \\ p_{j}^{(t+1)} &= \frac{N_{k}}{n}, \end{split}$$

 $N_k = \sum_{i=1}^{n} \pi_{ik}^{(t)}$.

where