o Blind signal separation: separation of 2 mixture of source
signals, without (or with very little) information about the sources
Introduction to Data Mining and and the mixing process. .

o Example (the cocktail party problem): isolate a single
conversation in a noisy room with many people talking.
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Mathematical formulation Assumptions

Note: Signals can only be recovered up to
mu;\m sgmm © Permutations: we can always permute the s;'s and the
row/columns of A to obtain new solutions.
@ Scaling: we can always rescale the s,'s and rescale the
z1(t) = ar1s1(t) + ar2s2(t) coefficients in A.
(Not a big deal in most applications.) Other problems?
o2(t) = ans1(t) + azsa(t) Problem with Gaussian data:
o Suppose 5 ~ N(Oz.1, a2 (independent Gaussian sources)

© We have (1) = As(1), t T o Let z = As where A € R?**
o We observe x(t). o Then & ~ N(0z1, AAT)
© We don’t know what A is (mixing matrix) o Let U be an orthogonal matrix, i.e., UUT = UTU
© We don’t observe s(t). o Let A = AU
We want to recover s(t) (and/or A). o Then A's ~ N(Og1, A'AT) = N(0,1, AUUTAT) =
o Current formulation is ill-posed: there are multiple ways of N(01, AAT)
mixing signals to get the output. Thus, there is no way to statistically differentiate if 2 was obtained
© We will seek a solution where the components of s are as from the mixing matrix A or A’
independent as possible. We will therefore assume the sources are not Gaussian.
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Independence of the sou

@ We seek sources that are as independent as possible.
@ Multiple ways to measure independence. For example:
@ Minimization of mutual information
ization of measures (neg .
kurtosis, etc.).
Motivation for (2) comes from the central limit theorem: a sum of
independent random variables should be “more Gaussian”.

To explain the above notions, we briefly discuss some concepts

from information theory. e

Entropy (

Example: X ~ Bernoulli(p), ie. P(X =1)=p,
P(X = p- The more “uncertain” the outcome is, the
larger the entropy.
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Entropy of a random variab

o Let X be a random variable taking values 1. ... zy with
probabilities P(X = ;) = p;
o The entropy of X is given by:

H(X) = E(~logp) = - >_ pilogpi.
pry
(usually, we take the log in base 2).
o Similarly, if X is a continuous random variable with density f(z),
we define:

[ oo st a

The entropy is a measure of the uncertainty or complexity of a
random variable.
Example: If X is a (discrete) uniform on {1,

(%

}, then
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Entropy and information

We would like to define a measure of information I(p) of an event
occurring with probability p. This functions should satisfy:
o I(p) >0.
o I(1) = 0 (the information gained from observing a certain
event is ()
o I(pips) = I(p1) + I(p2) (information gained from observing
two independent event is sum of information)
@ I should be continuous and monotonic

The above properties imply 7(p) = log;, ,‘7 for some base b.

The entropy of X is the average information “containe

N

H(X) =Y I(pi)pi-

i=1
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Leibler divergence

Entropy and

o Suppose we can only transmit Os and 1s.
© We need to encode our message (e.g. choose a code for each letter)

 How efficiently can we encore the message?

Sourca Recaiver
channel
S
—> 1010011001 —p <
encoding decoding

Example: Our source sends the letters A, B, C, D. Each letter is
equally likely to be transmitted.

We send on average (actually, ex-

A 0 C 1
-0 10 actly!) 2 bits per symbol

B—01 D—11
o If the symbols an not equally likely, it is not hard to see that one
can do better (i.e., send less bits per symbol on average).
o The entropy provides a lower bound on the average number of

bits required per symbol.
o6

Mutual information

o (Xi,...,X,) random vector with distribution p(z1,...,z,).

o Let p(z1),..., plx,) denote the marginals of p (i.e., the
distribution of each variable X;)

o Let (Yi,...,Y;) have distribution p(x1)p(x2) ... p(x,) (s0 Vi
has the same distribution as X;, but the Y;s are independent).

The mutual information of (Xi,...,X,) is given by
I(Xy,.... Xn) = Dxu(p(1, - w)llp(21) - - plan))
© We have I(X.Y) = 0 if and only if X.Y are independent

o Therefore, I(X. ..., X,,) provides a numerical measure of how
independent random variables are
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Given two (discrete) probability distributions P and Q, we define
the Kullback-Leibler divergence by
P(i)
(1Q) = g
Dia(PIIQ) Z,PW%Q“J
Similarly, when P and Q are continuous with densities p(x) and
q(x) respectively, we define
plx)
p(x) log da.
/ pl(e)log @
Intuitive interpretation:
@ A source send symbols with distribution P.
@ We encode the messages as if the source had distribution (.
o D1 (P||Q) is the number of supplementary bits per symbol
that we send for not using the “right” distribution.
The KL divergence is used as a measure of distance between

distributions (note however that Dr.(P||Q) # Dxr(Q||P) in
general).

D (PIQ)
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Measures of non-Gaussianity

o The kurtosis (from greek kuptéc, “curved”) of a random variable
with mean 11 = I(X) is given by
E[(X - p)]
o (B — ]2
o Measures the “propensity to produce outliers”.
@ The Gaussian distribution has kurtosis equal to 3.
@ Can thus use the “excess kurtosis” Kurt(X) — 3 to test for
“non-Gaussianity”
o The negentropy of a random variable X is given by
J(X) i= H(Xgauss) — H(X)
where Xy is a Gaussian random variable with the same mean
and variance as X
@ Motivated by the fact that the Gaussian distribution has the
largest entropy among all continuous distributions with a given
mean and variance,
@ Therefore, a variable that is “far from a Gaussian” should have
a larger negentropy.

Kurt(X) ==
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The FastICA algorithm Whitening the data

Before the FastICA algorithm is applied, the data needs to be
prewhitened.
o Let X € RV*M be the data matrix.
o FastICA (Hyvirinen, 1999) is an efficient and popular @ First center the rows of X:
algorithm for computing |ndependent components, Tij ¢ Tij — 72 Tik
@ Finds linear i an imation of the
negentropy.
@ The negentropy is replaced by the approximation

o Next, we want the linearly transform the rows of X so that
they become uncorrelated. We seek a linear transformation
L:RN*M — RN*M such that

)~ [E(GX)) ~ EC(Xym)] e = .

where G(z) = log cosh(x). This is easily achieved using the eigendecomposition of the
covariance matrix of the centered data X:
Lxx"—upy?
MXX UDU
@ Define the whitened data matrix by
Xtite := UD™2UT X,
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We mix two sound files, and recover them using ICA.

S s e

We want to extract independent components of the form w” X eyl o s et P St

where w € RY. it = ap 1a618(0, Sedata1e. sedata) [
hopEmngrEm sy

The FastICA algorithm: ey o mntita- vt (1 Jom /it

o Find a first direction w; maximizing the (approximation of) Jeara decosponition import FascICh
the negentropy (can use a fixed point method). -

o Estimate a second direction wy L w) maximizing the
(approximation of) the negentropy.

o have appraximately the same mass seplitede s the firat sised sigesl

° etc.. o zem)
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