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Motivation

Blind signal separation: separation of a mixture of source
signals, without (or with very little) information about the sources
and the mixing process.
Example (the cocktail party problem): isolate a single

conversation in a noisy room with many people talking.
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Mathematical formulation

We have x(t) = As(t), t = 1, . . . , T .
We observe x(t).
We don't know what A is (mixing matrix).
We don't observe s(t).

We want to recover s(t) (and/or A).

Current formulation is ill-posed: there are multiple ways of
mixing signals to get the output.
We will seek a solution where the components of s are as

independent as possible.
3/16

Assumptions

Note: Signals can only be recovered up to
1 Permutations: we can always permute the si's and the

row/columns of A to obtain new solutions.
2 Scaling: we can always rescale the si's and rescale the

coe�cients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

Suppose s ∼ N(02×1, I2×2) (independent Gaussian sources).
Let x = As where A ∈ R2×2.
Then x ∼ N(02×1, AA

T ).
Let U be an orthogonal matrix, i.e., UUT = UTU = I.
Let A′ = AU .
Then x′ = A′s ∼ N(02×1, A

′A′T ) = N(02×1, AUU
TAT ) =

N(02×1, AA
T ).

Thus, there is no way to statistically di�erentiate if x was obtained
from the mixing matrix A or A′.

We will therefore assume the sources are not Gaussian.
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Independence of the sources

We seek sources that are as independent as possible.

Multiple ways to measure independence. For example:
1 Minimization of mutual information.
2 Maximization of non-Gaussianity measures (negentropy,

kurtosis, etc.).

Motivation for (2) comes from the central limit theorem: a sum of
independent random variables should be �more Gaussian�.

To explain the above notions, we brie�y discuss some concepts
from information theory.
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Entropy of a random variable

Let X be a random variable taking values x1, . . . , xN with
probabilities P (X = xi) = pi.

The entropy of X is given by:

H(X) = E(− log p) = −
N∑
i=1

pi log pi.

(usually, we take the log in base 2).
Similarly, if X is a continuous random variable with density f(x),

we de�ne:

H(X) = −
∫
f(x) log f(x) dx

The entropy is a measure of the uncertainty or complexity of a
random variable.
Example: If X is a (discrete) uniform on {1, . . . , N}, then

H(X) = −
N∑
i=1

1

N
log

(
1

N

)
= logN.
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Entropy (cont.)

Example: X ∼ Bernoulli(p), i.e., P (X = 1) = p,
P (X = 0) = 1− p. The more �uncertain� the outcome is, the
larger the entropy.
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Entropy and information

We would like to de�ne a measure of information I(p) of an event
occurring with probability p. This functions should satisfy:

I(p) ≥ 0.

I(1) = 0 (the information gained from observing a certain
event is 0).

I(p1p2) = I(p1) + I(p2) (information gained from observing
two independent event is sum of information).

I should be continuous and monotonic.

The above properties imply I(p) = logb
1
p for some base b.

The entropy of X is the average information �contained� in X:

H(X) =
N∑
i=1

I(pi)pi.
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Entropy and communication

Suppose we can only transmit 0s and 1s.

We need to encode our message (e.g. choose a code for each letter).

How e�ciently can we encore the message?

Example: Our source sends the letters A,B,C,D. Each letter is
equally likely to be transmitted.

A→ 00 C → 10

B → 01 D → 11

We send on average (actually, ex-
actly!) 2 bits per symbol.

If the symbols an not equally likely, it is not hard to see that one
can do better (i.e., send less bits per symbol on average).
The entropy provides a lower bound on the average number of

bits required per symbol.
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Kullback�Leibler divergence

Given two (discrete) probability distributions P and Q, we de�ne
the Kullback�Leibler divergence by

DKL(P ||Q) :=
∑
i

P (i) log
P (i)

Q(i)
.

Similarly, when P and Q are continuous with densities p(x) and
q(x) respectively, we de�ne

DKL(P ||Q) :=

∫
p(x) log

p(x)

q(x)
dx.

Intuitive interpretation:

A source send symbols with distribution P .
We encode the messages as if the source had distribution Q.
DKL(P ||Q) is the number of supplementary bits per symbol
that we send for not using the �right� distribution.

The KL divergence is used as a measure of distance between
distributions (note however that DKL(P ||Q) 6= DKL(Q||P ) in
general).
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Mutual information

(X1, . . . , Xn) random vector with distribution p(x1, . . . , xn).

Let p(x1), . . . , p(xn) denote the marginals of p (i.e., the
distribution of each variable Xi).

Let (Y1, . . . , Yn) have distribution p(x1)p(x2) . . . p(xn) (so Yi
has the same distribution as Xi, but the Yis are independent).

The mutual information of (X1, . . . , Xn) is given by

I(X1, . . . , Xn) = DKL(p(x1, . . . , xn)||p(x1) . . . p(xn)).

We have I(X,Y ) = 0 if and only if X,Y are independent.
Therefore, I(X1, . . . , Xn) provides a numerical measure of how

independent random variables are.
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Measures of non-Gaussianity

The kurtosis (from greek κυρτός, �curved�) of a random variable
with mean µ = E(X) is given by

Kurt(X) :=
E[(X − µ)4]

(E[(X − µ)2])2
.

Measures the �propensity to produce outliers�.
The Gaussian distribution has kurtosis equal to 3.
Can thus use the �excess kurtosis� Kurt(X)− 3 to test for
�non-Gaussianity�.

The negentropy of a random variable X is given by

J(X) := H(Xgauss)−H(X),

where Xgauss is a Gaussian random variable with the same mean
and variance as X.

Motivated by the fact that the Gaussian distribution has the
largest entropy among all continuous distributions with a given
mean and variance.
Therefore, a variable that is �far from a Gaussian� should have
a larger negentropy.
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The FastICA algorithm

FastICA (Hyvärinen, 1999) is an e�cient and popular
algorithm for computing independent components.

Finds linear combinations maximizing an approximation of the
negentropy.

The negentropy is replaced by the approximation

J(X) ≈ [E(G(X))− E(G(Xgauss))]
2,

where G(x) = log cosh(x).
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Whitening the data

Before the FastICA algorithm is applied, the data needs to be
prewhitened.

Let X ∈ RN×M be the data matrix.
First center the rows of X:

xij ← xij −
1

M

∑
k

xik.

Next, we want the linearly transform the rows of X so that
they become uncorrelated. We seek a linear transformation
L : RN×M → RN×M such that

1

M
L(x)L(x)T = IN×N .

This is easily achieved using the eigendecomposition of the
covariance matrix of the centered data X:

1

M
XXT = UDUT .

De�ne the whitened data matrix by

Xwhite := UD−1/2UTX.
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The FastICA algorithm

We want to extract independent components of the form wTX
where w ∈ RN .

The FastICA algorithm:

Find a �rst direction w1 maximizing the (approximation of)
the negentropy (can use a �xed point method).

Estimate a second direction w2 ⊥ w1 maximizing the
(approximation of) the negentropy.

etc..
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Python - example

We mix two sound �les, and recover them using ICA.
import scipy.io.wavfile
import numpy as np

rate, data1 = scipy.io.wavfile.read('daft-punk.wav')
rate2, data2 = scipy.io.wavfile.read('weather.wav')

mix1 = np.int16(0.3*data1+0.5*data2)[:,0]
mix2 = np.int16(0.2*data1+0.4*data2)[:,0]

scipy.io.wavfile.write('./out/mix1.wav',rate,mix1)
scipy.io.wavfile.write('./out/mix2.wav',rate,mix2)

from sklearn.decomposition import FastICA

ica = FastICA(n_components = 2)

X = np.vstack([mix1,mix2]).T

S_ = ica.fit_transform(X)
A_ = ica.mixing_

# Rescale components to have approximately the same mean amplitude as the first mixed signal
m = abs(mix1).mean()

m1 = abs(S_[:,0]).mean()
m2 = abs(S_[:,1]).mean()

S1 = np.int16(S_[:,0]*m/m1)
S2 = np.int16(S_[:,1]*m/m2)

scipy.io.wavfile.write('./out/estimated_source1.wav',rate,S1)
scipy.io.wavfile.write('./out/estimated_source2.wav',rate,S2)
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