MATH 829: Introduction to Data Mining and

 AnalysisClustering III

Dominique Guillot
Departments of Mathematical Sciences University of Delavare

April 29, 2016

This lecture is based on U. von Luxburg, A Tutorial on Spectra/ Gustering, Statistica and Computing, 17 (4), 2007.

Graph cuts (cont.)

- The min-cut problem can be solved efficiently when $k=2$ (see Stoer and Wagner 1997).
- In practice it often does not lead to satisfactory partitions.
- In many cases, the solution of min-cut simply separates one individual vertex from the rest of the graph.

- We would like clusters to have a reasonably large number of points.
- We therefore modify the min-cut problem to enforce such constraints.

Graph cuts

- G graph with (weighted)
adjacency matrix $W=\left(w_{i j}\right)$.
- We define:

$$
W(A, B):=\sum_{i \in A, j \in B} w_{i j}
$$

- $|A|:=$ number of vertices in A.
- $\operatorname{vol}(A):=\sum_{i \in A} d_{i}$.

Given a partition A_{1}, \ldots, A_{k} of the vertices of G, we let

$$
\operatorname{cut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} W\left(A_{i}, \bar{A}_{i}\right)
$$

The min-cut problem consists of solving:

$$
\min _{\substack{V=A_{1} \cup \cdots \cup A_{k} \\ A_{1} \cap A_{j}=\emptyset \forall i \neq j}} \operatorname{cut}\left(A_{1}, \ldots, A_{k}\right) .
$$

Balanced cuts

The two most common objective functions that are used as a replacement to the min-cut objective are:
(1) RatioCut (Hagen and Kahng, 1992):

$$
\operatorname{RatioCut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|}
$$

- Normalized cut (Shi and Malik, 2000):

$$
\operatorname{Ncut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)}=\sum_{i=1}^{k} \frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)} .
$$

- Note: both objective functions take larger values when the clusters A_{i} are "small".
- Resulting clusters are more "balanced".
- However, the resulting problems are NP hard - see Wagner and Wagner (1993).

Spectral clustering

Spectral clustering provides a way to relax the RatioCut and the Normalized cut problems.

Strategy:

- Express the original problem as a linear algebra problem involving discrete/combinatorial constraints.
- Relax/remove the constraints.

RatioCut with $k=2$: solve

$$
\min _{A \subset V} \operatorname{RatioCut}(A, \bar{A}) .
$$

Given $A \subset V$, let $f \in \mathbb{R}^{n}$ be given by

$$
f_{i}:= \begin{cases}\sqrt{|\bar{A}| /|A|} & \text { if } v_{i} \in A \\ -\sqrt{|A| /|\bar{A}|} & \text { if } v_{i} \notin A .\end{cases}
$$

Relaxing RatioCut (cont.)

- We showed:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}=|V| \cdot \operatorname{RatioCut}(A, \bar{A}) .
$$

- Moreover, note that

$$
\sum_{i=1}^{n} f_{i}=\sum_{i \in A} \sqrt{\frac{|\bar{A}|}{|A|}}-\sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}}=|A| \cdot \sqrt{\frac{|\bar{A}|}{|A|}}-|\bar{A}| \cdot \sqrt{\frac{|A|}{|\bar{A}|}}=0 .
$$

Thus $f \perp \mathbb{1}$.

- Finally,

$$
\|f\|_{2}^{2}=\sum_{i=1}^{n} f_{i}^{2}=|A| \cdot \frac{|\bar{A}|}{|A|}+|\bar{A}| \cdot \frac{|A|}{|\bar{A}|}=|V|=n
$$

Thus, we have showed that the Ratio-Cut problem is equivalent to

$$
\begin{aligned}
& \min _{A \subset V} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}, f_{i} \text { defined as above. }
\end{aligned}
$$

Relaxing RatioCut

Let $L=D-W$ be the (unnormalized) Laplacian of G. Then

$$
\begin{aligned}
& f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i \in A, j \in \bar{A}} w_{i j}\left(\sqrt{\frac{|\bar{A}|}{|A|}}+\sqrt{\frac{|A|}{|\bar{A}|}}\right)^{2}+\frac{1}{2} \sum_{i \in \bar{A}, j \in A} w_{i j}\left(-\sqrt{\frac{|\bar{A}|}{|A|}}-\sqrt{\frac{|A|}{|\bar{A}|}}\right)^{2} \\
& =W(A, \bar{A})\left(2+\frac{|\bar{A}|}{|A|}+\frac{|A|}{\mid \overline{|A|}}\right) \\
& =W(A, \bar{A})\left(\frac{|A|+|\bar{A}|}{|A|}+\frac{|A|+|\bar{A}|}{|\bar{A}|}\right) \\
& =|V| \cdot \frac{1}{2}\left(\frac{W(A, \bar{A})}{|A|}+\frac{W(\bar{A}, A)}{|\bar{A}|}\right) \\
& =|V| \cdot \operatorname{RatioCut}(A, \bar{A}) .
\end{aligned}
$$

$$
\text { since }|A|+|\bar{A}|=|V| \text {, and } W(A, \bar{A})=W(\bar{A}, A)
$$

Relaxing RatioCut (cont.)

We have:

$$
\begin{aligned}
& \min _{A \subset V} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}, f_{i} \text { defined as above. }
\end{aligned}
$$

- This is a discrete optimization problem since the entries of f can only take two values: $\sqrt{|\bar{A}| /|A|}$ and $-\sqrt{|A| /|\bar{A}|}$.
- The problem is NP hard.

The natural relaxation of the problem is to remove the discreteness condition on f and solve

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n} .
\end{aligned}
$$

Relaxing RatioCut (cont.)

- Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$
\begin{aligned}
& \min _{f \in \mathbb{R}^{n}} f^{T} L f \\
& \text { subject to } f \perp \mathbb{1},\|f\|=\sqrt{n}
\end{aligned}
$$

is an eigenvector of L corresponding to the second eigenvalue of L.

- Clearly, if \tilde{f} is the solution of the problem, then

$$
\bar{f}^{T} L \tilde{f} \leq \min _{A \subset V} \operatorname{RatioCut}(A, \bar{A})
$$

- How do we get the clusters from \tilde{f} ?
- We could set

$$
\begin{cases}v_{i} \in A & \text { if } f_{i} \geq 0 \\ v_{i} \in \bar{A} & \text { if } f_{i}<0\end{cases}
$$

- More generally, we cluster the coordinates of f using K-means. This is the unnormalized spectral clustering algorithm for

$$
k=2 .
$$

Relaxing RatioCut : $k>2$

- We saw that the second eigenvector of L solves our relaxation of
the RatioCut problem for $k=2$.
- How do we proceed when we want $k>2$ clusters?

Given a partition A_{1}, \ldots, A_{k} of V, we define k indicator vectors

$$
h_{j}=\left(h_{1, j}, \ldots, h_{n, j}\right) \in \mathbb{R}^{n} \quad(j=1, \ldots, k)
$$

as follows:

$$
h_{i, j}:= \begin{cases}\frac{1}{\sqrt{\left|A_{j}\right|}} & \text { if } v_{i} \in A_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Let $H:=\left(h_{i j}\right) \in \mathbb{R}^{n \times k}$. Note that the columns h_{i} of H are orthonormal, i.e., $H^{T} H=I_{k \times k}$.
A similar calculation as we did before shows that (exercise):

$$
h_{i}^{T} L h_{i}=\frac{\operatorname{cut}\left(A_{i}, \bar{A}_{i}\right)}{\left|A_{i}\right|} .
$$

Relaxing RatioCut : $k>2$

- Using the Rayleigh-Ritz theorem, we obtain that the solution of the problem

$$
\begin{aligned}
& \min _{H \in \mathbb{R}^{n \times k}} \operatorname{Tr}\left(H^{T} L H\right) \\
& \text { subject to } H^{T} H=I_{k \times k}
\end{aligned}
$$

is given by the matrix containing the first k (normalized)
eigenvectors of L.

- How do we get the clusters?
- Before the relaxation, the rows of the optimal H indicate to which cluster each vertex belongs to.
- Similar to what we did when $k=2$, we cluster the rows of the matrix H (containing the first k eigenvectors of L as columns) using the K-means algorithm.

$$
\begin{aligned}
& \min _{H \in \mathbb{R}^{n \times k}} \operatorname{Tr}\left(H^{T} L H\right) \\
& \text { subject to } H^{T} H=I_{k \times k} .
\end{aligned}
$$

The unnormalized spectral clustering algorithm:

```
Unnormalized spectral clustering
Input: Similarity matrix S S\in\mathbb{R}
- Construct a sinilarity graph by ons of the ways described in Section 2. Let 
    be ita weighted adjacency natrix.
- Compute the unnormalized Laplacian }
- Compute the first k eigenvectors }\mp@subsup{u}{1}{},\ldots,\mp@subsup{u}{k}{}\mathrm{ of }L\mathrm{ .
- Let U \in R R}\timeskk\mathrm{ be the matrix containing the vectors }\mp@subsup{u}{1}{},\ldots,\mp@subsup{u}{k}{}\mathrm{ as columns.
- For i=1, n, let }y\in\mp@subsup{\mathbb{R}}{k}{k}\mathrm{ be the vector corresponding to the i-th row of U
```



```
-Custar the points (m\mp@subsup{)}{i=1}{n},\ldotsn\mathrm{ in }\mp@subsup{\mathbb{R}}{}{k}\mathrm{ with the }k\mathrm{ -means algorithn into clusters}
Output: Clusters }\mp@subsup{A}{1}{\prime}\ldots,\mp@subsup{A}{k}{}\mathrm{ vith }\mp@subsup{A}{i}{}={j|yj\in\mp@subsup{C}{i}{}
```

Saren: vos Luxirg, 2007

The normalized clustering algorithm of Ng et al.

- Another popular variant of the spectral clustering algorithm was provided by Ng, Jordan, and Weiss (2002).
- The algorithm uses $L_{\text {sym }}$ instead of L (unnormalized clustering) or L_{rw} (Shi and Malik's normalized clustering).

```
Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)
Input: Sinilarity natrix }S\in\mp@subsup{\mathbb{R}}{}{n\timesn}\mathrm{ , number }k\mathrm{ of clusters to construct.
Input: Sinilarity natrix S RR, number by of clustere to construct. 2. Let W
    - Construct a similarity graph by ond
    - Conpute the normalized Laplacian Ley
    - Compute the first k eigenvectors }\mp@subsup{u}{1}{},\ldots,\mp@subsup{u}{k}{}\mathrm{ of }\mp@subsup{L}{\mathrm{ sym.}}{\mathrm{ ,}
    - Let U}\in\mp@subsup{\mathbb{R}}{}{n\timesk}\mathrm{ be the matrix containing the vectore }\mp@subsup{u}{1}{},\ldots,\mp@subsup{w}{k}{}\mathrm{ as columns.
```



```
    that 18 set tiv = uijj/(\mp@subsup{\sum}{k}{*}\mp@subsup{u}{ik}{2}\mp@subsup{)}{}{1/2}
    - For i=1,\ldots,n, let \mp@subsup{y}{i}{}\in\mp@subsup{\mathbb{R}}{}{k}}\mathrm{ be the vector corresponding to the i-th row of T
-Cluster the points (vili=1,with the k-means algorithn into clusters Cl.....C.
Dutput: Cluatera }\mp@subsup{A}{1}{\prime}\ldots..\mp@subsup{A}{k}{}\mathrm{ with }\mp@subsup{A}{i}{}={{
```

Sorve: vor Luxtry, 2007,

See von Luxburg (2007) for details.

- Relaxing the RatioCut leads to unnormalized spectral clustering.
- By relaxing the Ncut problem, we obtain the Normalized spectral clustering algorithm of Shi and Malik (2000).

Normalized spectral clustering according to Shi and Malik (2000)
Input: Similarity natrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- Construct a similarity graph by one of the ways describad in Section 2. Let W be ita weighted adjacency matrix.
- Conpute the unnornalized Laplacian L.
- Compute the first k generalized eigenvectors u_{1}, \ldots, u_{k} of the generalized eigenproblem $L u=\lambda D u$.
Let $U \in \mathbb{R}^{n+k}$ be the matrix containing the vectors $u_{1} \ldots \ldots u_{k}$ as colums.
- For $i=1, \ldots, n$, let $y_{i} \in \mathbb{R}^{k}$ be the vector correeponding to the i-th row of U.

Cluster the points ($\left.y_{i}\right)_{i=1, \ldots, \ldots}$ in \mathbb{R}^{k} vith the k-neans algorithn into clusters
C_{1}, \ldots, C_{k}.
Output: Clusters $A_{2} \ldots, A_{k}$ with $A_{i}=\left\{j \mid y_{j} \in C_{i}\right\}$.
Saum: var Lextug, 2007.

- Note: The solutions of $L u=\lambda D u$ are the eigenvectors of L_{rw}. See von Luxburg (2007) for details.

