MATH 829: Introduction to Data Mining and Analysis Clustering III

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

A pril 29, 2016

This lecture is larged on U. von Luckarg, A. Tutorial on Spectral Clustering, Statistics and Computing, 17 [4], 2007.

Graph cuts

- G graph with (weighted) adjacency matrix W = (w_{ij}).
- We define:

$$W(A, B) := \sum_{i \in A, j \in B} w_{ij}.$$

|A| := number of vertices in A.
 vol(A) := ∑_{i∈A} d_i.

Given a partition A_1, \ldots, A_k of the vertices of G, we let

$$cut(A_1, ..., A_k) := \frac{1}{2} \sum_{i=1}^k W(A_i, \overline{A}_i).$$

The min-cut problem consists of solving:

 $\min_{\substack{V=A_1\cup\cdots\cup A_k\\A_i\cap A_j=\emptyset \ \forall i\neq j}} \operatorname{cut}(A_1,\ldots,A_k).$

Graph cuts (cont.)

- The min-cut problem can be solved efficiently when k = 2 (see Stoer and Wagner 1997).
- In practice it often does not lead to satisfactory partitions.
- In many cases, the solution of min-cut simply separates one individual vertex from the rest of the graph.

- We would like clusters to have a reasonably large number of points.
- We therefore modify the min-cut problem to enforce such constraints.

Balanced cuts

The two most common objective functions that are used as a replacement to the min-cut objective are:

O Ratio Cut (Hagen and Kahng, 1992):

$$\operatorname{R}\operatorname{atio}\operatorname{Cut}(A_1,\ldots,A_k):=\frac{1}{2}\sum_{i=1}^k \frac{W(A_i,\overline{A}_i)}{|A_i|}=\sum_{i=1}^k \frac{\operatorname{cut}(A_i,\overline{A}_i)}{|A_i|}$$

Normalized cut (Shi and Malik, 2000):

$$Ncut(A_1, ..., A_k) := \frac{1}{2} \sum_{i=1}^{k} \frac{W(A_i, \overline{A}_i)}{vol(A_i)} = \sum_{i=1}^{k} \frac{cut(A_i, \overline{A}_i)}{vol(A_i)}$$

- Note: both objective functions take larger values when the clusters A_i are "small".
- Resulting clusters are more "balanced".
- However, the resulting problems are NP hard see Wagner and Wagner (1993).

2/15

Spectral clustering

Spectral clustering provides a way to *relax* the RatioCut and the Normalized cut problems.

Strategy:

- Express the original problem as a linear algebra problem involving discrete/combinatorial constraints.
- Relax/remove the constraints.

RatioCut with k = 2: solve

 $\min_{A \subset V} \operatorname{RatioCut}(A, \overline{A}).$

Given $A \subset V$, let $f \in \mathbb{R}^n$ be given by

$$f_i := \begin{cases} \sqrt{|\overline{A}|/|A|} & \text{if } v_i \in A \\ -\sqrt{|A|/|\overline{A}|} & \text{if } v_i \notin A. \end{cases}$$

5/15

Relaxing RatioCut (cont.)

• We showed:

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij}(f_{i} - f_{j})^{2} = |V| \cdot \mathbb{R} \operatorname{atio} \operatorname{Cut}(A, \overline{A}).$$

· Moreover, note that

$$\sum_{i=1}^{n} f_i = \sum_{i \in A} \sqrt{\frac{|\overline{A}|}{|A|}} - \sum_{i \in \overline{A}} \sqrt{\frac{|A|}{|\overline{A}|}} = |A| \cdot \sqrt{\frac{|\overline{A}|}{|A|}} - |\overline{A}| \cdot \sqrt{\frac{|A|}{|\overline{A}|}} = 0.$$

Thus $f\perp 1$.

• Finally,

$$\|f\|_2^2 = \sum_{i=1}^n f_i^2 = |A| \cdot \frac{|\overline{A}|}{|A|} + |\overline{A}| \cdot \frac{|A|}{|\overline{A}|} = |V| = n.$$

Thus, we have showed that the Ratio-Cut problem is equivalent to

$$\min_{A \subset V} f^T L f$$

subject to $f \perp 1$, $||f|| = \sqrt{n}$, f_i defined as above.

Relaxing RatioCut

Let L = D - W be the (unnormalized) Laplacian of G. Then

$$\begin{split} f^2 Lf &= \frac{1}{2}\sum_{i,j=1}^n w_{ij}(f_i - f_j)^2 \\ &= \frac{1}{2}\sum_{i \in \mathcal{A}, j \in \mathcal{A}} w_{ij} \left(\sqrt{\frac{|\mathcal{A}|}{|\mathcal{A}|}} + \sqrt{\frac{|\mathcal{A}|}{|\mathcal{A}|}}\right)^2 + \frac{1}{2}\sum_{i \in \mathcal{A}, j \in \mathcal{A}} w_{ij} \left(-\sqrt{\frac{|\mathcal{A}|}{|\mathcal{A}|}} - \sqrt{\frac{|\mathcal{A}|}{|\mathcal{A}|}}\right)^2 \\ &= W(\mathcal{A}, \overline{\mathcal{A}}) \left(2 + \frac{|\mathcal{A}|}{|\mathcal{A}|} + \frac{|\mathcal{A}|}{|\mathcal{A}|}\right) \\ &= W(\mathcal{A}, \overline{\mathcal{A}}) \left(\frac{|\mathcal{A}| + |\mathcal{A}|}{|\mathcal{A}|} + \frac{|\mathcal{A}| + |\mathcal{A}|}{|\mathcal{A}|}\right) \\ &= |V| \cdot \frac{1}{2} \left(\frac{W(\mathcal{A}, \mathcal{A})}{|\mathcal{A}|} + \frac{W(\overline{\mathcal{A}}, \mathcal{A})}{|\mathcal{A}|}\right) \\ &= |V| \cdot \frac{1}{2} \left(\frac{W(\mathcal{A}, \mathcal{A})}{|\mathcal{A}|} + \frac{W(\overline{\mathcal{A}}, \mathcal{A})}{|\mathcal{A}|}\right) \\ &= |V| \cdot |\mathbf{X} \text{ tot cot}(\mathcal{A}, \mathcal{A}). \end{split}$$

0/15

Relaxing RatioCut (cont.)

We have:

$$\min_{A \subset V} f^T L f$$

subject to $f \perp 1$, $||f|| = \sqrt{n}$, f_i defined as above.

• This is a discrete optimization problem since the entries of f can only take two values: $\sqrt{|\overline{A}|/|A|}$ and $-\sqrt{|A|/|\overline{A}|}$.

• The problem is NP hard.

The natural relaxation of the problem is to remove the discreteness condition on f and solve

$$\min_{f \in \mathbb{R}^n} f^T L f$$
subject to $f \perp 1, ||f|| = \sqrt{n}$

Relaxing RatioCut (cont.)

 Using properties of the Rayleigh quotient, it is not hard to show that the solution of

$$\min_{f \in \mathbb{R}^n} f^T L f$$
subject to $f \perp 1, ||f|| = \sqrt{n}.$

is an eigenvector of L corresponding to the second eigenvalue of L.

 ${\bf \bullet}$ Clearly, if \tilde{f} is the solution of the problem, then

$$\tilde{f}^{T}L\tilde{f} \leq \min_{A \subset V} \operatorname{RatioCut}(A, \overline{A}).$$

- How do we get the clusters from \tilde{f} ?
- We could set

$$\begin{cases}
v_i \in A & \text{if } f_i \ge 0 \\
v_i \in \overline{A} & \text{if } f_i < 0.
\end{cases}$$

- More generally, we *cluster* the coordinates of f using K-means.
 - This is the unnormalized spectral clustering algorithm for k=2.

9/15

Relaxing RatioCut : k > 2

- ${\bf \bullet}$ We saw that the second eigenvector of L solves our relaxation of the RatioCut problem for k=2.
- How do we proceed when we want k > 2 clusters?

Given a partition A_1, \ldots, A_k of V, we define k indicator vectors

$$h_j = (h_{1,j}, ..., h_{n,j}) \in \mathbb{R}^n$$
 $(j = 1, ..., k)$

as follows:

$$h_{i,j} := \begin{cases} \frac{1}{\sqrt{|A_j|}} & \text{if } v_i \in A_j \\ 0 & \text{otherwise.} \end{cases}$$

Let $H:=(h_{ij})\in \mathbb{R}^{n\times k}.$ Note that the columns h_i of H are orthonormal, i.e., $H^TH=I_{k\times k}.$

A similar calculation as we did before shows that (exercise):

$$h_i^T L h_i = \frac{\operatorname{cut}(A_i, \overline{A}_i)}{|A_i|}$$

10/15

Relaxing RatioCut : k > 2

 Using the Rayleigh-Ritz theorem, we obtain that the solution of the problem

$$\min_{\substack{H \in \mathbb{R}^{n \times k}}} \operatorname{Tr}(H^T L H)$$
subject to $H^T H = I_{k \times k}$

is given by the matrix containing the first $k \ ({\rm normalized})$ eigenvectors of L.

- How do we get the clusters?
- Before the relaxation, the rows of the optimal H indicate to which cluster each vertex belongs to.

 Similar to what we did when k = 2, we cluster the rows of the matrix H (containing the first k eigenvectors of L as columns) using the K-means algorithm.

Relaxing RatioCut : k > 2

• Now,

$$h_i^T L h_i = (H^T L H)$$

• Thus,

Ratio
$$\operatorname{Cut}(A_1, \dots, A_k) = \sum_{i=1}^{k} \frac{\operatorname{cut}(A_i, \overline{A}_i)}{|A_i|} = \sum_{i=1}^{k} h_i^T L h_i = \operatorname{Tr}(H^T L H).$$

So the problem

$$\min_{\substack{V=A_1\cup\cdots\cup A_k\\A_i\cap A_j=\emptyset \ \forall i\neq j}} \operatorname{Ratio} \operatorname{Cut}(A_1, \ldots, A_k)$$

is equivalent to

 $\min_{\substack{H \in \mathbb{R}^{n \times k}}} \operatorname{Tr}(H^T L H)$ subject to $H^T H = I_{k \times k}$. H defined as above,

• As before, we consider a natural relaxation of the problem:

$$\min_{\substack{H \in \mathbb{R}^{n \times k}}} \operatorname{Tr}(H^T L H)$$

subject to $H^T H = I_{k \times k}$

The unnormalized spectral clustering algorithm:

Output: Clusters A_1, \dots, A_k with $A_i = \{j | y_i \in C_i\}$.

Surce on Lubry, 207.

Normalized spectral clustering

Relaxing the RatioCut leads to unnormalized spectral clustering.
 By relaxing the Ncut problem, we obtain the Normalized spectral clustering algorithm of Shi and Malik (2000).

Normalized	spectral clustering according to Shi and Malik (2000)
Input: Sim	larity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.
· Construct	a similarity graph by one of the ways described in Section 2. Let W
	ighted adjacency matrix.
· Compute 1	he unnormalized Laplacian L.
 Compute 	the first k generalized eigenvectors $u_1,, u_k$ of the generalized eigenprob-
lem Lu =	λDu .
• Let $U \in \mathbb{F}$	$n \times k$ be the matrix containing the vectors u_1, \dots, u_k as columns.
	, n, let $w_i \in \mathbb{R}^k$ be the vector corresponding to the <i>i</i> -th row of U.
· Cluster 1	he points (p))=1 in R ^k with the k-means algorithm into clusters
$C_1,, C_k$	
Output: Cla	sters A_1, \dots, A_k with $A_i = \{j y_i \in C_i\}$.

• Note: The solutions of $Lu = \lambda Du$ are the eigenvectors of $L_{\rm rw}$. See von Luxburg (2007) for details.

13/15

15/15

The normalized clustering algorithm of Ng et al.

 Another popular variant of the spectral clustering algorithm was provided by Ng, Jordan, and Weiss (2002).

 The algorithm uses L_{sym} instead of L (unnormalized clustering) or L_{rw} (Shi and Malik's normalized clustering).

See von Luxburg (2007) for details.

24/25