MATH 829: Introduction to Data Mining and Analysis Graphical Models I

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

May 2, 2016

Independence and conditional independence: motivation

We begin with a classical example (Whittaker, 1990):

- We study the examination marks of 88 students in five subjects: mechanics, vectors, algebra, analysis, statistics (Mardia, Kent, and Bibby, 1979).
- · Mechanics and vectors were closed books.
- All the remaining exams were open books.

We can examine the results using a stem and leaf plot.

	algeba	ma distica
n.		9
10.		45770009
20.	1	012455699
30.	12 6 6 6 7 7 6 8 9	0011122333344556677799
40.	0113333341166667777888999999	000000112344455555667
50.	000000111223333344415666778899	0113346
60.	000111123455578	112 33 4 4 78 8 8
70.	2	033
80.		1111

Note: Data appears to be normally distributed.

1/12

Example (cont.)

We compute the correlation between the grades of the students:

mech	1.0				
vect	0.55	1.0			
alg	0.55	0.61	1.0		
a na l	0.41	0.49	0.71	1.0	
sta t	1.0 0.55 0.55 0.41 0.39	0.44	0.66	0.61	1.0
	mec h	vec t	a Ig	ana	sta t

 We observe that the grades are positively correlated between subjects (performance of a student across subjects (good or bad) is consistent).

We now examine the inverse correlation matrix:

mech	1.60				
vect		1.80			
alg anal	-0.51	-0.66	3.04		
a na l	0.00	-0.15	-1.11	2.18	
sta t	-0.04	0.04	-0.86	-0.52	1.92
	mec h	vect	a Ig	a na	sta t

Example (cont.)

Interpreting the inverse correlation matrix:

- Diagonal entries = 1/(1 R²) are related to the proportion of variance explained by regressing the variable on the other variables.
- Off-diagonal entries: proportional to the correlation of pairs of variables, given the rest of the variables.

For example, $R_{much}^2 = (1.60 - 1)/1.60 = 37.5\%$.

For the off-digonal entries, we first scale the inverse correlation matrix $\Omega = (\omega_{ij})$ by computing $\frac{\omega_{ij}}{(decorrect})$:

mech	1.0	1.0 •0.28 •0.08 •0.02			
alg	-0.23	-0.28	1.0		
a na l	0.00	-0.08	-0.43	1.0	
stat		vect			

The off-diagonal entries of the scaled inverse correlation matrix are the negative of the conditional correlation coefficients (i.e., the correlation coefficients after conditioning on the rest of the variables). 2/12

Example (cont.)

Notation:

- \bullet We denote the fact that two random variables X and Y are independent by $X\perp\!\!\!\perp Y.$
- We write X ⊥⊥ Y |{Z₁,...,Z_n} when X and Y are independent given Z₁,...,Z_n.
- When the context is clear (i.e. when working with a fixed collection of random variables {X1,...,Xn}, we write

 $X_i \perp \!\!\!\perp X_j \mid \text{rest}$

instead of $X_i \perp X_j | \{X_k : 1 \le k \le n, k \ne i, j\}$.

Important: In general, uncorrelated variables are not independent. This is true however for the multivariate Gaussian distribution.

5/12

Independence and factorizations

Graphical models (a.k.a Markov random fields) are multivariate probability models whose independence structure is characterized by a graph.

Recall: Independence of random vectors is characterized by a factorization of their joint density:

 \bullet Independent variables: For two random vectors X, Y:

 $X \perp \!\!\!\perp Y \iff f_{X,Y}(x,y) = g(x)h(y) \quad \forall x, y$

for some functions g, h.

 \bullet Conditionally independent variables: Similarly, for three random vectors X,Y,Z:

 $X \perp\!\!\!\perp Y | Z \quad \Leftrightarrow \quad f_{X,Y,Z}(x,y,z) = g(x,z) h(y,z)$

for all x, y and all z for which $f_Z(z) > 0$.

Example (cont.)

We noted before that our data appears to be Gaussian. Therefore it appears that:

- o anal ⊥ mech | rest.
- anal ⊥⊥ vect | rest.
- 🧿 stat ⊥ mech | rest.
- Stat ⊥⊥ vect | rest.

We represent these relations using a graph:

We put no edge between two variables iff they are conditionally independent (given the rest of the variables).

6/12

Independence graphs

- Let $X = (X_1, \dots, X_p)$ be a random vector.
 - The conditional independence graph of X is the graph G = (V, E) where $V = \{1, \dots, p\}$ and

 $(i, j) \notin E \iff X_i \perp \perp X_j | \text{rest.}$

 A subset S ⊂ V is said to separate A ⊂ V from B ⊂ V if every path from A to B contains a vertex in S.

Notation: If $X = (X_1, \dots, X_p)$ and $A \subset \{1, \dots, p\}$. then $X_A := (X_i : i \in A)$.

Theorem: (the separation theorem) Suppose the density of X is positive and continuous. Let $V = A \cup S \cup B$ be a partition of V such that S separates A from B. Then

$$X_A \perp X_B \mid X_S.$$

Example: $X = (X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9)$:

Then

Markov properties

Let $X = (X_1, \dots, X_p)$ be a random vector and let G be a graph on $\{1, \dots, p\}$. The vector is said to satisfy:

- The pairwise Markov property if X_i ⊥⊥ X_j | rest whenever (i, j) ∉ E.
- **3** The local Markov property if for every vertex $i \in V$.

 $X_i \perp \!\!\!\perp X_{V \setminus c!(i)} | X_{ne(i)},$

where $ne(i) = \{j \in V : (i, j) \in E, j \neq i\}$ and $cl(i) = \{i\} \cup ne(i).$

O The global Markov property if for every disjoint subsets A, S, B ⊂ V such that S separates A from B in G, we have

 $X_A \perp\!\!\!\perp X_B \mid X_S.$

• Clearly, $gbbal \Rightarrow local \Rightarrow pairwise$.

 When X has a positive and continuous density, by the separation theorem,

pairwise ⇒ globa

and so all three properties are equivalent.

10/12

The Hammersley-Clifford theorem

- An undirected graphical model (a.k.a. Markov random field) is a set of random variables satisfying a Markov property.
- Independence and conditional independence correspond to a factorization of the joint density.
- It is natural to try to characterize Markov properties via a factorization of the joint density.
- The Hammersley-Clifford theorem provides a necessary and sufficient condition for a random vector to have a Markov random field structure.

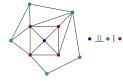
Theorem: (Hammersley-Clifford) Let X be a random vector with a positive and continuous density f. Then X satisfies the pairwise Markov property with respect to a graph G if and only if

$$f(x) = \prod_{C \in C} \psi_C(x_C),$$

where C is the set of (maximal) cliques (complete subgraphs) of G.

Example: the local Markov property

Illustration of the local Markov property:



9/12