MATH 829: Introduction to Data Mining and Analysis
 Graphical Models II - Gaussian Graphical Models

Dominique Guillot
Departments of Mathematical Sciences
University of Delaware

May 4, 2016

Recall: Multivariate Gaussian/normal distribution

Recall: $X=\left(X_{1}, \ldots, X_{p}\right) \sim N(\mu, \Sigma)$ where $\mu \in \mathbb{R}^{p}$ and
$\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{p \times p}$ is positive definite if

$$
P(X \in A)=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det} \Sigma}} \int_{A} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} d x_{1} \ldots d x_{p}
$$

Bivariate case:

We have

$$
E(X)=\mu, \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j}
$$

If $Y=c+B X$, where $c \in \mathbb{R}^{p}$ and $B \in \mathbb{R}^{m \times p}$, then

$$
Y \sim N\left(c+B \mu, B \Sigma B^{T}\right)
$$

Note: $\Omega:=\Sigma^{-1}$ is called the precision matrix or the concentration matrix of the distribution.

- An undirected graphical model is a set of random variables $\left\{X_{1}, \ldots, X_{p}\right\}$ satisfying a Markov property.
- Let $G=(V, E)$ be a graph on $\{1, \ldots, p\}$.
- The pairwise Markov property: $X_{i} \Perp X_{j} \mid$ rest whenever $(i, j) \notin E$.
- If the density of $X=\left(X_{1}, \ldots, X_{p}\right)$ is continuous and positive, then

$$
\text { pairwise } \Leftrightarrow \text { local } \Leftrightarrow \text { global. }
$$

- The Hammersley-Clifford theorem provides a necessary and sufficient condition for a random vector to have a Markov random field structure with respect to a given graph G.

We will now turn our attention to the special case of a random vector with a multivariate Gaussian distribution.

The Schur complement

Let

$$
M:=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A=A_{m \times m}, B=B_{m \times n}, C=C_{n \times m}$, and $D=D_{n \times n}$. Assuming D is invertible, the Schur complement of D in M is

$$
M / D:=A-B D^{-1} C .
$$

Important properties:

- $\operatorname{det} M=\operatorname{det} D \cdot \operatorname{det}(M / D)$.
- $M \in \mathbb{P}_{n+m}$ if and only if $D \in \mathbb{P}_{n}$ and $M / D \in \mathbb{P}_{m}$. where $\mathbb{P}_{k}=$ denotes the cone of $k \times k$ real symmetric positive semidefinite matrices.
Proof:

$$
M=\left(\begin{array}{cc}
I_{m} & B D^{-1} \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I_{m} & 0 \\
D^{-1} C & I_{n}
\end{array}\right) .
$$

Multivariate Gaussian/normal distribution (cont.)

- Conditional distribution: if $A \cup B$ is a partition of $\{1, \ldots, p\}$,
then

$$
X_{A} \mid X_{B}=x_{B} \sim N\left(\mu_{A \mid B}, \Sigma_{A \mid B}\right),
$$

with

$$
\mu_{A \mid B}:=\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(x_{B}-\mu_{B}\right),
$$

and

$$
\Sigma_{A \mid B}:=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
$$

- Marginals: to obtain the joint distribution of $\left(X_{i}, X_{j}\right)$, note that

$$
\left(X_{i}, X_{j}\right)^{T}=B\left(X_{1}, \ldots, X_{p}\right)^{T}
$$

where

$$
B=\left(\begin{array}{ll}
I_{2 \times 2} & \mathbf{0}_{2 \times(p-2)}
\end{array}\right) \in \mathbb{R}^{2 \times p} .
$$

Therefore

$$
\left(X_{i}, X_{j}\right)^{T} \sim N\left(B \mu, B \Sigma B^{T}\right),
$$

and

$$
B \mu=\binom{\mu_{1}}{\mu_{2}}, \quad B \Sigma B^{T}=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right) .
$$

Multivariate Gaussian/normal distribution (cont.)

Proof of (2): Without loss of generality, assume $(i, j)=(1,2)$.
Write μ, Σ in block form according to the partition
$A=\{1,2\}, B=\{3, \ldots, p\}$:

$$
\mu=\left(\mu_{A}, \mu_{B}\right)^{T}, \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{A A} & \Sigma_{A B} \\
\Sigma_{B A} & \Sigma_{B B}
\end{array}\right) .
$$

Now

$$
\left(X_{1}, X_{2}\right)^{T} \mid \text { rest }=x_{B} \sim N\left(\mu_{A \mid B}, \Sigma_{A \mid B}\right),
$$

where

$$
\mu_{A \mid B}:=\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(x_{B}-\mu_{B}\right)
$$

and

$$
\Sigma_{A \mid B}:=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
$$

By part (1), $X_{1} \Perp X_{2} \mid$ rest iff $\left(\Sigma_{A \mid B}\right)_{12}=0$.

Multivariate Gaussian/normal distribution (cont.)

Now, suppose

$$
X \sim N(\mu, \Sigma)
$$

with $\mu \in \mathbb{R}^{p}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{p \times p}$ psd.

Claim:

(1) $X_{i} \Perp X_{j}$ iff $\sigma_{i j}=0$.

- $X_{i} \Perp X_{j} \mid$ rest iff $\left(\Sigma^{-1}\right)_{i j}=0$.

Proof of (1):

$$
X_{i} \Perp X_{j} \Leftrightarrow X_{i} \mid X_{j}=x_{j} \stackrel{\mathcal{C}}{=} X_{i} \quad \forall x_{j} .
$$

Now

$$
X_{i} \left\lvert\, X_{j}=x_{j} \sim N\left(\mu_{i}+\frac{\sigma_{i i}}{\sigma_{j j}} \rho\left(x_{j}-\mu_{j}\right),\left(1-\rho^{2}\right) \sigma_{i i}^{2}\right)\right.
$$

where $\rho=\frac{\sigma_{i j}}{\sigma_{i i} \sigma_{j j}}$ is the correlation coefficient between X_{i} and X_{j}.
Therefore $X_{i} \Perp X_{j}$ iff $\rho=0$ iff $\sigma_{i j}=0$.

The inverse of a block matrix

Computing the inverse of a block matrix:
9.1.3 The Inverse

The inverse can be expressed as by the use of

$$
\begin{align*}
& \mathbf{C}_{1}=\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \tag{399}\\
& \mathbf{C}_{2}=\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \tag{400}
\end{align*}
$$

as

It follows that

$$
\Sigma_{A \mid B}^{-1}=\left(\Sigma^{-1}\right)_{1: 2,1: 2}
$$

We have shown

$$
\Sigma_{A \mid B}^{-1}=\left(\Sigma^{-1}\right)_{1: 2,1: 2}
$$

Also, we have

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)^{-1}=\frac{1}{a c-b^{2}}\left(\begin{array}{cc}
c & -b \\
-b & a
\end{array}\right)
$$

Finally,

$$
\left(\Sigma_{A \mid B}\right)_{12}=0 \Leftrightarrow\left(\Sigma_{A \mid B}^{-1}\right)_{12}=0 \Leftrightarrow\left(\Sigma^{-1}\right)_{12}=0
$$

Therefore, $X_{i} \Perp X_{j} \mid$ rest iff $\left(\Sigma^{-1}\right)_{i j}=0$.
We have shown that when $X \sim N(\mu, \Sigma)$,

- $X_{i} \Perp X_{j}$ iff $\Sigma_{i j}=0$.
- $X_{i} \Perp X_{j} \mid$ rest iff $\left(\Sigma^{-1}\right)_{i j}=0$.
- To discover the conditional structure of X, we need to estimate the structure of zeros of the precision matrix $\Omega=\Sigma^{-1}$.
- We will proceed in a way that is similar to the lasso.
- To discover the conditional structure of X, we need to estimate
the structure of zeros of the precision matrix $\Omega=\Sigma^{-1}$.
- Suppose $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^{p}$ are iid observations of X. The associated \log-likelihood of (μ, Σ) is given by
$l(\mu, \Sigma):=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{1}{2} \sum_{i=1}^{n}\left(x^{(i)}-\mu\right)^{T} \Sigma^{-1}\left(x^{(i)}-\mu\right)-\frac{n p}{2} \log (2 \pi)$.
Classical result: the MLE of (μ, Σ) is given by

$$
\hat{\mu}:=\frac{1}{n} \sum_{i=1}^{n} x^{(i)}, \quad S:=\frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}-\hat{\mu}\right)\left(x^{(i)}-\hat{\mu}\right)^{T} .
$$

Estimating the Cl structure of a GGM (cont.)

- Using $\hat{\mu}$ and $\widehat{\Sigma}$, we can conveniently rewrite the log-likelihood as:

$$
\begin{aligned}
l(\mu, \Sigma)= & -\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{Tr}\left(S \Sigma^{-1}\right)-\frac{n p}{2} \log (2 \pi) \\
& -\frac{n}{2} \operatorname{Tr}\left(\Sigma^{-1}(\hat{\mu}-\mu)(\hat{\mu}-\mu)^{T}\right)
\end{aligned}
$$

(use the identity $x^{T} A x=\operatorname{Tr}\left(A x x^{T}\right)$.

- Note that the last term is minimized when $\mu=\hat{\mu}$ (independently of Σ) since

$$
\operatorname{Tr}\left(\Sigma^{-1}(\hat{\mu}-\mu)(\hat{\mu}-\mu)^{T}\right)=(\hat{\mu}-\mu)^{T} \Sigma^{-1}(\hat{\mu}-\mu) \geq 0
$$

(The last inequality holds since Σ^{-1} is positive definite.)

- Therefore the \log-likelihood of $\Omega:=\Sigma^{-1}$ is

$$
l(\Omega) \propto \log \operatorname{det} \Omega-\operatorname{Tr}(S \Omega) \quad \text { (up to a constant }) .
$$

The Graphical Lasso

The Graphical Lasso (glasso) algorithm (Friedman, Hastie,
Tibshirani, 2007), Banerjee et al. (2007), solves the penalized likelihood problem:

$$
\hat{\Omega}_{\rho}=\underset{\Omega \mathrm{psd}}{\operatorname{argmax}}\left[\log \operatorname{det} \Omega-\operatorname{Tr}(S \Omega)-\rho \sum_{i, j=1}^{p}\|\Omega\|_{\mathrm{I}}\right]
$$

where $\|\Omega\|_{1}:=\sum_{i, j=1}^{p}\left|\Omega_{i j}\right|$, and $\rho>0$ is a fixed regularization parameter.

- Idea: Make a trade-off between maximizing the likelihood and having a sparse Ω.
- Just like in the lasso problem, using a 1-norm tends to introduce many zeros into Ω.
- The regularization parameter ρ can be chosen by cross-validation.
- The above problem can be efficiently solved for problems with up to a few thousand variables (see e.g. ESL, Algorithm 17.2).

MLE estimation of a GGM

- From the glasso solution, one infers a conditional
independence graph for $X=\left(X_{1}, \ldots, X_{p}\right)$.
- Given a graph $G=(V, E)$ with p vertices, let

$$
\mathbb{P}_{G}:=\left\{A \in \mathbb{P}_{p}: A_{i j}=0 \text { if }(i, j) \notin E\right\} .
$$

- We can now estimate the optimal covariance matrix with the given graph structure by solving:

$$
\hat{\Sigma}_{G}:=\underset{\Sigma: \Omega=\Sigma^{-1} \in \mathbb{P}_{G}}{\operatorname{argmax}} l(\Sigma),
$$

where $l(\Sigma)$ denotes the log-likelihood of Σ.

- Note: Instead of maximizing the log-likelihood over all possible psd matrices as in the classical case, we restrict ourselves to the matrices having the right conditional independence structure.
- The "graphical MLE" problem can be solved efficiently for up to a few thousand variables (see e.g. ESL, Algorithm 17.1).

