MATH 829: Introduction to Data Mining and Analysis
 Graphical Models III - Gaussian Graphical Models (cont.)

Dominique Guillot

Departments of Mathematical Sciences
University of Delavare
May 6, 2016

During the last lecture, we have shown that when $X \sim N(\mu, \Sigma)$,
(-1 $X_{i} \Perp X_{j}$ iff $\Sigma_{i j}=0$.

- $X_{i} \Perp X_{j} \mid$ rest iff $\left(\Sigma^{-1}\right)_{i j}=0$.
- To discover the conditional structure of X, we need to estimate
the structure of zeros of the precision matrix $\Omega=\Sigma^{-1}$.
- We will proceed in a way that is similar to the lasso.
- Suppose $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^{p}$ are iid observations of X. The associated \log-likelihood of (μ, Σ) is given by
$l(\mu, \Sigma):=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{1}{2} \sum_{i=1}^{n}\left(x^{(i)}-\mu\right)^{T} \Sigma^{-1}\left(x^{(i)}-\mu\right)-\frac{n p}{2} \log (2 \pi)$.
Classical result: the MLE of (μ, Σ) is given by

$$
\hat{\mu}:=\frac{1}{n} \sum_{i=1}^{n} x^{(i)}, \quad S:=\frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}-\hat{\mu}\right)\left(x^{(i)}-\hat{\mu}\right)^{T} .
$$

The Graphical Lasso

The Graphical Lasso (glasso) algorithm (Friedman, Hastie,
Tibshirani, 2007), Banerjee et al. (2007), solves the penalized likelihood problem:

$$
\hat{\Omega}_{\rho}=\underset{\Omega \mathrm{psd}}{\operatorname{argmax}}\left[\log \operatorname{det} \Omega-\operatorname{Tr}(S \Omega)-\rho \sum_{i, j=1}^{p}\|\Omega\|_{\mathrm{I}}\right]
$$

where $\|\Omega\|_{1}:=\sum_{i, j=1}^{p}\left|\Omega_{i j}\right|$, and $\rho>0$ is a fixed regularization parameter.

- Idea: Make a trade-off between maximizing the likelihood and having a sparse Ω.
- Just like in the lasso problem, using a 1-norm tends to introduce many zeros into Ω.
- The regularization parameter ρ can be chosen by cross-validation.
- The above problem can be efficiently solved for problems with up to a few thousand variables (see e.g. ESL, Algorithm 17.2).

The Graphical Lasso (cont.)

- We need to maximize

$$
F(\Omega):=\log \operatorname{det} \Omega-\operatorname{Tr}(S \Omega)-\rho \sum_{i, j=1}^{p}\|\Omega\|_{1}
$$

- Since F is concave, we can use the sub-gradient to identify optimal points of F (to be really rigorous, we should be working with $-F$ in order to use the sub-gradient, but the derivation is the same).
- We have

$$
\frac{\partial}{\partial \Omega} \log \operatorname{det} \Omega=\Omega^{-1}, \quad \frac{\partial}{\partial \Omega} \operatorname{Tr}(S \Omega)=S
$$

Also,

$$
\partial \sum_{i, j=1}^{p}\left|\Omega_{i j}\right|=\operatorname{Sign}(\Omega)
$$

where

$$
\operatorname{Sign}(\Omega)_{i j}= \begin{cases}1 & \text { if } \Omega_{i j}>0 \\ -1 & \text { if } \Omega_{i j}<0 \\ {[-1,1]} & \text { if } \Omega_{i j}=0\end{cases}
$$

The Graphical Lasso (cont.)

- Putting everything together, we get

$$
\partial F=\Omega^{-1}-S-\rho \cdot \operatorname{Sign}(\Omega)
$$

- Just like for the lasso problem, we will derive a coordinate-wise approach to solve the glasso problem.
- Let $W=\Omega^{-1}$. Write W and Ω in block form

$$
W=\left(\begin{array}{ll}
W_{11} & w_{12} \\
w_{12}^{T} & w_{22}
\end{array}\right), \quad \Omega=\left(\begin{array}{ll}
\Omega_{11} & \omega_{12} \\
\omega_{12}^{T} & \omega_{22}
\end{array}\right)
$$

where $W_{11}, \Omega_{11} \in \mathbb{R}^{(p-1) \times(p-1)}$.

- We will cyclically optimize F, one column/row at a time.
- Note that since $W \Omega=I$, we have

$$
\left(\begin{array}{cc}
W_{11} \Omega_{11}+w_{12} \omega_{12}^{T} & W_{11} \omega_{12}+w_{12} \omega_{22} \\
w_{12}^{T} \Omega_{11}+w_{22} \omega_{12}^{T} & w_{12}^{T} \omega_{12}+w_{22} \omega_{22}
\end{array}\right)=\left(\begin{array}{cc}
c_{(p-1) \times(p-1)} & \mathbf{0}_{(p-1) \times 1} \\
\mathbf{0}_{1 \times(p-1)} & 0
\end{array}\right) .
$$

The Graphical Lasso (cont.)

- In particular, we have $W_{11} \omega_{12}+w_{12} \omega_{22}=0$, i.e.,

$$
w_{12}=-W_{11} \frac{\omega_{12}}{\omega_{22}}=W_{11} \beta,
$$

where $\beta:=-\omega_{12} / \omega_{22}$.

- Now, the upper right block of $\Omega^{-1}-S-\rho \cdot \operatorname{Sign}(\Omega)$ is equal to

$$
w_{12}-s_{12}+\rho \cdot \operatorname{Sign}(\beta)
$$

since $\omega_{22}>0$.

- We need to choose w_{12} such that

$$
0 \in w_{12}-s_{12}+\rho \cdot \operatorname{Sign}(\beta) \Leftrightarrow 0 \in W_{11} \beta-s_{12}+\rho \cdot \operatorname{Sign}(\beta)
$$

Observation: in the lasso problem $\min _{\beta} \frac{1}{2}\|y-Z \beta\|^{2}+\rho\|\beta\|_{1}$, we have

$$
\partial\left(\frac{1}{2}\|y-Z \beta\|^{2}+\rho\|\beta\|_{1}\right)=Z^{T} Z \beta-Z^{T} y+\rho \cdot \operatorname{Sign}(\beta)
$$

The Graphical Lasso (cont.)

So, we have the two optimality conditions:

- Glasso update: $0 \in W_{11} \beta-s_{12}+\rho \cdot \operatorname{Sign}(\beta)$
- Lasso problem: $0 \in Z^{T} Z \beta-Z^{T} y+\rho \cdot \operatorname{Sign}(\beta)$

Now, let $Z:=W_{11}^{1 / 2}$, and $y:=W_{11}^{-1 / 2} s_{12}$.

- The glasso update is thus equivalent to solving the lasso problem:

$$
\min _{\beta} \frac{1}{2}\left\|W_{11}^{-1 / 2} s_{12}-W_{11}^{1 / 2} \beta\right\|_{2}^{2}+\rho\|\beta\|_{1} .
$$

We can therefore solve the glasso problem by cycling through the row/columns of W, and updating them by solving a lasso problem!

The Graphical Lasso (cont.)

We therefore have the following algorithm to solve the glasso problem.

$$
\begin{aligned}
& \hline \text { Algorithm } 17.2 \text { Graphical Lasso. } \\
& \hline \text { 1. Initialize } \mathbf{W}=\mathbf{S}+\lambda \mathbf{I} \text {. The diagonal of } \mathbf{W} \text { remains unchanged in } \\
& \text { what follows. } \\
& \text { 2. Repeat for } j=1,2, \ldots p, 1,2, \ldots p, \ldots \text { until convergence: } \\
& \text { (a) Partition the matrix } \mathbf{W} \text { into part 1: all but the } j \text { th row and } \\
& \text { column, and part 2: the jth row and column. } \\
& \text { (b) Solve the estimating equations } \mathbf{W}_{11} \beta-s_{12}+\lambda \cdot \operatorname{Sign}(\beta)=0 \\
& \text { using the cyclical coordinate-descent algorithm (17.26) for the } \\
& \text { modified lasso. } \\
& \text { (c) Update } w_{12}=\mathbf{W}_{11} \hat{\beta} \\
& \text { 3. In the final cycle (for each } j \text {) solve for } \hat{\theta}_{12}=-\hat{\beta} \cdot \hat{\theta}_{22} \text {, with } 1 / \hat{\theta}_{22}= \\
& w_{22}-w_{12}^{T} \hat{\beta} \text {. }
\end{aligned}
$$

$$
\text { EL, Alpitin } 172 .
$$

MLE estimation of a GGM (cont.)

Computing the Gaussian MLE of a multivariate normal random vector with known conditional independence graph G :

```
Algorithm 17.1 A Modified Regression Algorithm for Estimation of an
Undirected Ganssian Graphical Model with Known Structure.
    1. Initialize \(\mathbf{W}=\mathbf{S}\).
    2. Repeat for \(j=1,2, \ldots, p\) until convergence
        (a) Partition the matrix W into part 1: all but the \(j\) th row and
        column, and part 2: the \(j\) th row and column.
            (b) Solve \(\mathbf{W}_{11} \beta^{*}-s_{12}^{*}=0\) for the unconstrained edge parameters
                \(\beta^{*}\), using the reduced system of equations as in (17.19). Obtain
            \(\hat{\beta}\) by padding \(\hat{\beta}^{*}\) with zeros in the appropriate positions.
            (c) Update \(w_{12}=\mathbf{W}_{11} \hat{\beta}\)
    3. In the final cycle (for each \(j\) ) solve for \(\dot{\theta}_{12}=-\dot{\beta} \cdot \dot{\theta}_{22}\), with \(1 / \hat{\theta}_{22}=\)
        \(s_{22}-w_{12}^{T} \hat{\beta}\).
```

 EL, Ala itho 17.1
 The derivation of the algorithm is similar to the derivation of the glasso algorithm (see ESL, Section 17.3.1).

MLE estimation of a GGM

- From the glasso solution, one infers a conditional
independence graph for $X=\left(X_{1}, \ldots, X_{p}\right)$ by examining the zeros in the estimated inverse covariance matrix.
- Given a graph $G=(V, E)$ with p vertices, let

$$
\mathbb{P}_{G}:=\left\{A \in \mathbb{P}_{p}: A_{i j}=0 \text { if }(i, j) \notin E\right\} .
$$

- We can now estimate the optimal covariance matrix with the given graph structure by solving:

$$
\hat{\Sigma}_{G}:=\underset{\Sigma: \Omega=\Sigma^{-1} \in \mathrm{P}_{G}}{\operatorname{argmax}} l(\Sigma),
$$

where $l(\Sigma)$ denotes the log-likelihood of Σ.

- Note: Instead of maximizing the log-likelihood over all possible psd matrices as in the classical case, we restrict ourselves to the matrices having the right conditional independence structure.
- The "graphical MLE" problem can be solved efficiently for up to a few thousand variables (see e.g. ESL, Algorithm 17.1).

Application

Example: Estimating the conditional independencies in temperature fields (Guillot et al., 2015)

FIG. 3. Example of estimated graphical structure of a temperature field (HadCRUT3v).

Reconstructing climate fields using paleoclimate proxies:

- Estimate conditional independence graph on instrumental period.

- Use an EM algorithm with an embedded graphical model.
- The resulting algorithm is called GraphEM.
See Guillot et al.(2015) for more details.

