During the last lecture, we have shown that when X ~
Q X; UL X; iff S = 0
0 X; UL X; | rest iff (S71);; =0
Graphical Models 1l - Gaussian Graphical Models :JZ:,:Z:::; t::g,’:iz?ﬁ‘:;‘;:;;0,:::":'; "je;f? estimate
(cont.) o We will proceed in a way that is similar to the lasso.
o Suppose o), ... (") € RP are iid observations of X The
associated log-likelihood of (j1, %) is given by
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o Using ji and &, we can conveniently rewrite the log-likelihood as The Graphical Lasso (glasso) algorithm (Friedman, Hastie,
\ » Tibshirani, 2007), Banerjee et al. (2007), solves the penalized
11, 5) == Flogdet T = ZTe(5E™") = L log(2m) likelihood problem:

— 3T = i = )"

.
3l

ig=1

Q,= argmax log det Q — Tr(SQ) —
; " @

(use the identity 27 Az = Tr(Aza™)

where Q1 == 327, |9], and p > 0 is a fixed regularization

o Note that the last term is minimized when 4 = ji (independently
parameter.

of £) since
o Idea: Make a trade-off between maximizing the likelihood and
T2 (o= ) (= w)") = (= ) SN ) 2 0 having a sparse

@ Just like in the lasso problem, using a 1-norm tends to
introduce many zeros into Q.

o Therefore the log-likelihood of £ := X! is @ The regularization parameter p can be chosen by
cross-validation.

o The above problem can be efficiently solved for problems with
up to a few thousand variables (see e.g. ESL, Algorithm 17.2)
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(The last inequality holds since £~ is positive definite.)

1(Q) x logdet © — Tr(SQ)  (up to a constant)



© We need to maximize
»
F(Q) = logdet @ — Tr(SQ) — p Y |12
Pl

@ Since F is concave, we can use the sub-gradient to identify optimal
points of F (to be really rigorous, we should be working with — £ in
order to use the sub-gradient, but the derivation is the same)

© We have

9 L D e .
Jolosdet@=07", LTS =8

Also,

Sign(©)

where
1 0, >0

Sign(Q);; =4 1 if 2 <0
L1 Q=0

o In particular, we have Wiiwiz + wiows = 0, ie.,
wyp = —W“% Wb,
where 8 = —wia/wz
o Now, the upper right block of 21 — 5 — p - Sign(Q2) is equal to
wiz = s12 + p - Sign(3)

since wzz > 0.
@ We need to choose w2 such that

0€wiz—s12+ p-Sign(B) & 0€ W8 — s12 + p - Sign(8)

Observation: in the lasso problem ming ly — ZS||? + || 1. we
have

a1 2
o (gw ~ 2+ ﬂH»ﬂh) —ZTEB Iyt p-Sien(d).

The Graphical Lasso (cont.)
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@ Putting everything together, we get
IF =7 — S — p-Sign(Q).

o Just like for the lasso problem, we wil derive a coordinate-wise
approach to solve the glasso problem
o Let IV = QL. Write W and 2 in block form

wz(:;.n j‘jw). n:(% wjv).
Ui Wa2 wiy w22
where 111, € R-Dx(-1)

@ We will cyclically optimize F, one column/row at a time.
@ Note that since WQ = I, we have

T

The Graphical Lasso (cont.)

(Wuﬂu +wipwly Wiwrs + wvzwn) _ (I(’rfﬂx(pf\,\ U(yr*”x])
0

wh + wapwly  whwia + wasws O1x(p-1)

So, we have the two optimality conditions:
o Glasso update: 0 € IWy,8 — 512 + p - Sign(8)
o Lasso problem: 0 ¢ Z7Z3 — Z7y + p - Sign(3)

Now, let Z := W}{?, and y := W}, %512,

@ The glasso update is thus equivalent to solving the lasso problem:

1 —1/:
min 3 [ W50 = Wi{*813 + ol 1

We can therefore solve the glasso problem by cycling through the
row/columns of I, and updating them by solving a lasso problem!

o2

The Graphical Lasso (cont.)
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The Graphical Lasso (cont.)

We therefore have the following algorithm to solve the glasso
problem

Algorithm 17.2 Graphical Lasso,

L. Initialize W = § + AL The diagonal of W remains unchanged in

what follows

2. Repeat for j=1,2,...p,1,2,...p,... until convergence:
(a) Partition the matrix W into part 1: all but the jth row and
column, and part 2: the jth row and column
(1) Solve the cstimating cauations Wyuf — si | A - Sign(9) =
the cyclical coordinate-descent, algorithm (17.26) for the
modified lisso.
(¢) Update wy2 = Wy, &
3. In the final cycle (for each j) solve for iz = —3 - fza, with 1/ =

wp — wh
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timation

Computing the Gaussian MLE of a multivariate normal random
vector with known conditional independence graph G:

Algorithm 17.1 A Modificd Regression Algorithm for Estimation of an
Undirected Gaussian Graphical Model with Knowun Structure
1. Initialize W = S
2. Repeat for j = 1,2,....,p until convergence
(a) Pactition the matrix W into part 1: all but the jth row and
column, and part 2: the jth row and column.

(b) Solve W3, 3* — si = 0 for the unconstrained edge parameters
3", using the reduced system of equations as in (17.19). Obtain
5 by padding 3* with zeros in the appropriate positions.
(c) Update wiz = Wiy
3. In the final cycle (for cach j) solve for G2 with 1/iz
[Ep——

The derivation of the algorithm is similar to the derivation of the
glasso algorithm (see ESL, Section 17.3.1)

nm

MLE estimation of a GGM

o From the glasso solution, one infers a conditional
independence graph for X = (X1,...,X,) by examining the
zeros in the estimated inverse covariance matrix.

o Given a graph G = (V. E) with p vertices, let
Poi={A€P,: Aj=0if (i,)) € E}.

© We can now estimate the optimal covariance matrix with the
given graph structure by solving:

Sgi=  argmax (%),
Q=x"lePg

where (53) denotes the log-likelihood of %
@ Note: Instead of maximizing the log-likelihood over all possible
psd matrices as in the classical case, we restrict ourselves to the
matrices having the right conditional independence structure

o The “graphical MLE" problem can be solved efficiently for up to a

few thousand variables (see e.g, ESL, Algorithm 17.1).
w0/

Application

ditional independencies in

Example: i the
fields (Guilot et al., 2015)

Reconstructing climate fields using paleoclimate proxies:

o Estimate conditional independence graph
on instrumental period

© Use an EM algorithm with an embedded
graphical model.

o The resulting algorithm is called

GraphE
See Guillot et al.(2015) for more details
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