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Markov chains

Let S := {s1, s2, . . . } be a countable set.

A (discrete time) Markov chain is a discrete stochastic process

{Xn : n = 0, 1, . . . } such that

1 Xn is an S-valued random variable ∀n ≥ 0.

2 (Markov Property) For all i, j, i0, . . . , in−1 ∈ S, and all n ≥ 0:

P (Xn+1 = j|X0 = i0, . . . , Xn−1 = in−1, Xn = i) = P (Xn+1 = j|Xn = i).

Interpretation: Given the present Xn, the future Xn+1 is

independent of the past (X0, . . . , Xn−1).

The elements of S are called the states of the Markov chain.

When Xn = j, we say that the process is in state j at time n.

2/12

Stationarity and transition probabilities

A Markov chain is homogeneous (or stationary) if for all n ≥ 0
and all i, j ∈ S,

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i) =: p(i, j).

In other words, the transition probabilities do not depend on

time.

We will only consider homogeneous chains in what follows.

We denote by P := (p(i, j))i,j∈S the transition matrix of the

chain.

Note: P is a stochastic matrix, i.e.,

∀i, j ∈ S, p(i, j) ≥ 0, and ∀i ∈ S,
∑
j∈S

p(i, j) = 1.

Conversely, every stochastic matrix is the transition matrix of

some homogeneous discrete time Markov chain.
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Examples

Example 1: (Two-state Markov chain)

S = {0, 1}, p(0, 1) = a, p(1, 0) = b, a, b ∈ [0, 1]

P =

(
1− a a
b 1− b

)
.

We naturally represent P using a transition (or state) diagram:

Interpretation: machine is either broken (0) or working (1) at

start of n-th day.
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Examples (cont.)

Example 2: (Simple random walk) Let ξ1, ξ2, ξ3, . . . be iid random

variables such that ∀i ≥ 1,

ξi =


+1 P (ξi = +1) = p

0 P (ξi = 0) = r

−1 P (ξi = −1) = q

,

where p+ r + q = 1, p, r, q ≥ 0.

Let X0 be an integer valued random variable independent of the

ξi's.

De�ne ∀n ≥ 1,

Xn = X0 +
n∑

i=1

ξi.

The process is a random walk.
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Review of Markov chains (cont.)

Here S = {0,±1,±2, . . . }.

Exercise: What is P for that Markov chain?
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n-step transitions

Let {Xn : n ≥ 0} be a Markov chain.

We de�ne the initial distribution of the chain by

µ0(i) := P (X0 = i) (i ∈ S).
All distributional properties of a (homogeneous) Markov Chain

are determined by its initial distribution and transition probability

matrix.

For n ≥ 1, we de�ne the n-step transition probability pn(i, j)
by

pn(i, j) := P (Xn = j|X0 = i) = P (Xn+m = j|Xm = i).

Also, de�ne

p0(i, j) =

{
1 i = j

0 i 6= j
.

We de�ne the n-step transition matrix by

P (n) := (pn(i, j) : i, j ∈ S).
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Chapman-Kolmogorov

Theorem: (The Chapman-Kolmogorov Equations) We have for all

m,n ≥ 1:
P (n+m) = P (n) · P (m).

In particular, for all n ≥ 1,

P (n) = P · P (n−1) = · · · = Pn.

Moral: n-step transition probabilities are computed using matrix

multiplications.

Let µn := (µn(i) : i ∈ S) denote the distribution of Xn:

µn(i) := P (Xn = i).

Proposition: We have

µm+n = µmP
n, and µn = µ0P

n.

Moral: Distributional computations for Markov Chains are just

matrix multiplications.
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Reducibility

Reducibility:

A state j ∈ S is said to be accessible from i ∈ S (denotde i→ j) if
a system started in state i has a non-zero probability of
transitioning into state j at some point.

A state i ∈ S is said to communicate with state j ∈ S (denoted
i↔ j) if both i→ j and j → i.

Note: Communication is an equivalence relation.

A Markov chain is said to be irreducible if its state space is a

single communicating class.
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Transience and periodicity

Transience:

A state i ∈ S is said to be transient if, given that we start in

state i, there is a non-zero probability that we will never return

to i.
A state is recurrent if it is not transient.

The recurrence time of state i ∈ S is

Ti := min{n ≥ 1 : Xn = i given X0 = i}.
Note: i ∈ S is recurrent i� P (Ti <∞) = 1.
A recurrent state i ∈ S is positive recurrent if E[Ti] <∞.

Periodicity:

A state i ∈ S has period k if

k = gcd{n > 0 : P (Xn = i|X0 = i) > 0}.
For example, suppose you start in state i and can only return to i at
time 6, 8, 10, 12, etc.. Then the period of i is 2.

If k = 1, then the state is said to be aperiodic.

A Markov chain is aperiodic if every state is aperiodic.
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Limiting behavior

Limiting behavior of Markov chains: What happens to pn(i, j)
as n→∞?

Example: (The two-state Markov chain)

If (a, b) 6= (0, 0), we have (exercise):

Pn =
1

a+ b

(
b a
b a

)
+

(1− a− b)n

a+ b

(
a −a
−b b

)
.

Thus, if (a, b) 6= (0, 0) and (a, b) 6= (1, 1), then

lim
n→∞

pn(0, 0) = lim
n→∞

pn(1, 0) =
b

a+ b

lim
n→∞

pn(0, 1) = lim
n→∞

pn(1, 1) =
a

a+ b
.

Thus, the chain has a limiting distribution.

The limiting distribution is independent of the initial state.
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Stationary distribution

Recall: µn+1 = µnP .

A vector π = (π(i) : i ∈ S) is said to be a stationary distribution

for a Markov chain {Xn : n ≥ 0} if
1 0 ≤ πi ≤ 1 ∀i ∈ S.
2
∑

i∈S πi = 1.

3 π = πP , where P is the transition probability matrix of the

Markov chain.

Remark: In general, a stationary distribution may not exist or be

unique.

Theorem: Let {Xn : n ≥ 0} be an irreducible and aperiodic

Markov chain where each state is positive recurrent. Then

1 The chain has a unique stationary distribution π.

2 For all i ∈ S, limn→∞ P (Xn = i) = π(i).

3 πi =
1

E[Ti]
.

π(i) can be interpreted as the average proportion of time spent by

the chain in state i.
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