MATH 829: Introduction to Data Mining and
Analysis Frequentist statistics:
o Compute point estimates (e.g. maximum likelihood)

A (very brief) introduction to Bayesian inference

o Define probabilities as the long-run frequency of events

Dominique Guillot Bayesian statistics:

@ Probabilities are a “state of knowledge” or a “state of belief”

Departments of Mathematical Sciences @ Parameters have a pl y
University of Delaware . R
o Prior knowledge is updated in the light of new data.
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Example Example

Note: “datalp” ~ Binomial(14, p). Therefore:

ont.)

You flip a coin 14 times. You get head 10 times. What is 14
p = P(head)? P(datalp) = <m)r‘“(l -»'
@ Frequentist approach: estimate p using, say maximum likelihood

What should we choose for P(p)?
0.714. The beta distribution Beta(a, 5):
Lla+8) o1
T(a)T(3)
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P(p;a,f) = PN 1-p)Pt (pe(0,1)).

o Bayesian approach: we treat p as a random variable
@ Choose a prior distribution for p, say P(p).
@ Update the prior distribution using the data via Bayes’
theorem:

P(datalp)P(p,
P(pldata) = W o P(datalp) P(p)
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Example (cont.) Example (cont.)

@ How should we choose o, 37

According to our prior knowledge of p

o Suppose we decide to pick p ~ Beta(, ). Then: ! - )
o Suppose we have no prior knowledge: use a flat prior: o = 3 = 1

P(pldata) x P(datalp)P(p) (Uniform distribution)
) § The resulting posterior distribution is p|data ~ Beta(11,
14Y 1, iLla+8) . 51 ¢ &P P
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= plotasi(q _ pytra-1
Remark: We don’t need to worry about the normalization constant
since it is uniquely determined by the fact that P(p|data) is a i -
probability distribution
o Conclusion: P(p|data) ~ Beta(10 + a,4 + 8) Our “knowledge” of p has now been updated using the observed
data (or evidence)
Impportant advantage: Our estimate of p comes with its own

uncertainty.
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Bayesian analysis Conjugate priors

More generally: suppose we have a model for X that depends on some

[ . . . .
parameters 0. Then o In the previous example, the posterior distribution was from the
Q Choose a prior P(0) for 0. same family as the prior.
@ Compute the posterior distribution of § using o A prior with this property is said to be a conjugating prior.
POX) x P(X]0) - P(6). o Conjugating priors are known for many common likelihood
Note: Posterior = Prior x Likelihiood functions.
Advantages: Likelihood Canjugate prior
o Mimics the scientific method; formulate hypothesis, run experiment, Bramal Bt
update knowledge Mdtnaal Dinciet
@ Can incorporate prior information (e.g. the range of variables) Nomnal
1 unkrou, o keown Nomal
o Automatically provides uncertainty estimates. i e Iere hi-Square
Mtvaiate Nomal
Drawbacks: s o, V krown

sate Nomnal
@ Not always obvious how to choose priors, i knowey Vi umkoovey Vachart

@ Can be difficult to compute the posterior distribution

o Can be computationally intensive to sample from the posterior

distribution (when not available in closed form)
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MCMC methods Rejection sampling

@ Markov chain Monte Carlo (MCMC) methods are popular ways A simple way to sample from a distribution
of sampling from complicated distributions (e.g. the posterior o We want to sample from a distribution f(z) (complicated).
distribution of a complicated model). & We know how to sample from another distribution ()
o Idea: (simpler)
@ Construct a Markov chain with the desired distribution as its @ We know that f(z) < c- g(x) for some (known) constant
stationary distribution = >0
© Burn (e.g. forget) a given number of samples from the Markov Then

chain (while the chain converges to its stationary distribution) © Draw = ~ h(x) and u ~ Uniform[0, 1]
© Generate a sample from the desired distribution 0 Ifu< f(=)/(c-g(

z)) accept the draw. Otherwise, discard =
(approximately).

and repeat.
Works well in some cases, but the rejection rate is often large and
the resulting algorithm can be very inefficient.

o One generally then compute some statistics of the sample
(e.g. mean, variance, mode, etc.)
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astings algorithm (cont

o Suppose we want to sample from a distribution P(x) = f(x)/K,

o Nicolas Metropolis (1915-1999) was an American physicist. He where > 0 is some constant

worked on the first nuclear reactors at the Los Alamos National Note: The normalization constant K is often unknown and difficult
Laboratory during the second world war. Introduced the algorithm to compute.

in 1953 in the paper @ The Metropolis—Hastings starts with an initial sample, and

generate new samples using a transition probability density q(x.y)

Equation of State Calculations by Fast Computing Machines (the proposal distribution)

with A, Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller o We assume
o W. K. Hastings (Born 1930) is a Canadian statistician who o we can evaluate f(z) at every
extended the algorithm to the more general case in 1970 o we can evaluate g(x,y) at every 7,y

@ we can sample from the distribution ¢(z. ).
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The Metropolis-Hastings algorithm: we start with z such that
flxo) > 0. Fori=0,...

O Generate a new value y according to q(a, -).

@ Compute the “Hastings” ratio:

JW)aly

R

© “Accept” the new sample y with probability min(1, R). If y is

accepted, set x4y := y. Otherwise, z;41 = x;
Some difficulties:

o Choosing an efficient proposal distribution ¢(a, y)

o How long should we wait for the Markov chain to converge to
the desired distribution, i.e., how many samples should we
burn?

o How long should we sample after convergence to make sure we
sample in low probability regions?
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Gibbs sampling

o Idea: use the conditional distribution of X to generate new

samples,

o Note: only possible when the conditional distributions are “nice”.

Suppose X = (X1,..., X,) and X0 = (", ... &) is a given
{ L) as

sample. Generate a new sample X (i+1) —
follows:

i+
O Generate 2™

according to the marginal

ploifed, ... ).

+1)

O Generate xy ' according to

(41
plasfai™Y,
© Generate 2 ") accodring to
(i+1; i+1) (i) (i)
plalal ™, el 2L al)

Q etc.
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