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Bayesian vs. Frequentist

Frequentist statistics:

Compute point estimates (e.g. maximum likelihood).

De�ne probabilities as the long-run frequency of events .

Bayesian statistics:

Probabilities are a �state of knowledge� or a �state of belief�.

Parameters have a probability distribution.

Prior knowledge is updated in the light of new data.
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Example

You �ip a coin 14 times. You get head 10 times. What is

p := P (head)?
Frequentist approach: estimate p using, say maximum likelihood:

p ≈ 10

14
≈ 0.714.

Bayesian approach: we treat p as a random variable.

1 Choose a prior distribution for p, say P (p).

2 Update the prior distribution using the data via Bayes'

theorem:

P (p|data) =
P (data|p)P (p)

P (data)
∝ P (data|p)P (p).
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Example (cont.)

Note: “data|p′′ ∼ Binomial(14, p). Therefore:

P (data|p) =

(
14

10

)
p10(1− p)4.

What should we choose for P (p)?

The beta distribution Beta(α, β):

P (p;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (p ∈ (0, 1)).

Source: Wikipedia.
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Example (cont.)

Suppose we decide to pick p ∼ Beta(α, β). Then:

P (p|data) ∝ P (data|p)P (p)

=

(
14

10

)
p10(1− p)4 Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

∝ p10(1− p)4pα−1(1− p)β−1

= p10+α−1(1− p)4+β−1.

Remark: We don't need to worry about the normalization constant

since it is uniquely determined by the fact that P (p|data) is a

probability distribution.

Conclusion: P (p|data) ∼ Beta(10 + α, 4 + β).
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Example (cont.)

How should we choose α, β?

According to our prior knowledge of p.

Suppose we have no prior knowledge: use a �at prior: α = β = 1
(Uniform distribution).

The resulting posterior distribution is p|data ∼ Beta(11, 5):

Our �knowledge� of p has now been updated using the observed

data (or evidence).

Impportant advantage: Our estimate of p comes with its own

uncertainty.
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Bayesian analysis

More generally: suppose we have a model for X that depends on some
parameters θ. Then:

1 Choose a prior P (θ) for θ.

2 Compute the posterior distribution of θ using

p(θ|X) ∝ P (X|θ) · P (θ).

Note: Posterior = Prior× Likelihood.
Advantages:

Mimics the scienti�c method: formulate hypothesis, run experiment,
update knowledge.

Can incorporate prior information (e.g. the range of variables).

Automatically provides uncertainty estimates.

Drawbacks:

Not always obvious how to choose priors.

Can be di�cult to compute the posterior distribution.

Can be computationally intensive to sample from the posterior
distribution (when not available in closed form).
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Conjugate priors

In the previous example, the posterior distribution was from the

same family as the prior.

A prior with this property is said to be a conjugating prior.

Conjugating priors are known for many common likelihood

functions.
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MCMC methods

Markov chain Monte Carlo (MCMC) methods are popular ways

of sampling from complicated distributions (e.g. the posterior

distribution of a complicated model).

Idea:

1 Construct a Markov chain with the desired distribution as its

stationary distribution π.

2 Burn (e.g. forget) a given number of samples from the Markov

chain (while the chain converges to its stationary distribution).

3 Generate a sample from the desired distribution

(approximately).

One generally then compute some statistics of the sample

(e.g. mean, variance, mode, etc.).
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Rejection sampling

A simple way to sample from a distribution:

We want to sample from a distribution f(x) (complicated).

We know how to sample from another distribution g(x)
(simpler).

We know that f(x) ≤ c · g(x) for some (known) constant

c > 0.

Then

1 Draw z ∼ h(x) and u ∼ Uniform[0, 1].

2 If u < f(z)/(c · g(z)) accept the draw. Otherwise, discard z
and repeat.

Works well in some cases, but the rejection rate is often large and

the resulting algorithm can be very ine�cient.
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Metropolis�Hastings algorithm

Nicolas Metropolis (1915�1999) was an American physicist. He

worked on the �rst nuclear reactors at the Los Alamos National

Laboratory during the second world war. Introduced the algorithm

in 1953 in the paper

Equation of State Calculations by Fast Computing Machines

with A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller

W. K. Hastings (Born 1930) is a Canadian statistician who

extended the algorithm to the more general case in 1970.
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Metropolis�Hastings algorithm (cont.)

Suppose we want to sample from a distribution P (x) = f(x)/K,

where K > 0 is some constant.

Note: The normalization constant K is often unknown and di�cult

to compute.

The Metropolis�Hastings starts with an initial sample, and

generate new samples using a transition probability density q(x, y)
(the proposal distribution).

We assume

we can evaluate f(x) at every x.

we can evaluate q(x, y) at every x, y.

we can sample from the distribution q(x, ·).
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Metropolis�Hastings algorithm (cont.)

The Metropolis�Hastings algorithm: we start with x0 such that

f(x0) > 0. For i = 0, . . .
1 Generate a new value y according to q(x, ·).
2 Compute the �Hastings� ratio:

R =
f(y)q(y, x)

f(x)q(x, y)

3 �Accept� the new sample y with probability min(1, R). If y is

accepted, set xi+1 := y. Otherwise, xi+1 = xi.

Some di�culties:

Choosing an e�cient proposal distribution q(x, y).

How long should we wait for the Markov chain to converge to

the desired distribution, i.e., how many samples should we

burn?

How long should we sample after convergence to make sure we

sample in low probability regions?
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Gibbs sampling

Idea: use the conditional distribution of X to generate new

samples.

Note: only possible when the conditional distributions are �nice�.

Suppose X = (X1, . . . , Xp) and X(i) = (x
(i)
1 , . . . , x

(i)
p ) is a given

sample. Generate a new sample X(i+1) = (x
(i+1)
1 , . . . , x

(i+1)
p ) as

follows:
1 Generate x

(i+1)
1 according to the marginal

p(x1|x(i)2 , . . . , x(i)p ).

2 Generate x
(i+1)
2 according to

p(x2|x(i+1)
1 , x

(i)
3 , . . . , x(i)p ).

3 Generate x
(i+1)
3 accodring to

p(x3|x(i+1)
1 , x

(i+1)
2 , x

(i)
4 . . . , x(i)p ).
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